首页 > 新书资源
新书资源(2023年5月)

DNA origami : structures, technology and applications / edited by Masayuki Endo -- Hoboken, NJ : Wiley, 2022. – (58.174252/D629t)

Contents

List of Contributors
Preface
1  DNA Origami Technology: Achievements in the Initial 10 Years
1.1    Introduction  1
1.2    Two-Dimensional DNA Origami  3
1.3    Programmed Arrangement of Multiple DNA Origami Components  6
1.4    Three-Dimensional DNA Origami Structures  9
1.5    Modification and Functionalization of 2D DNA Origami Structures  11
1.6    Single-Molecule Detection and Sensing using DNA Origami Structures  14
1.7    Application to Single Biomolecule AFM Imaging  16
1.8    Single-Molecule Fluorescence Studies  19
1.9    DNA Molecular Machines 22
1.10   Selective Incorporation of Nanomaterials and the Applications 24
1.11   Dynamic DNA Origami Structures Responsive to External Stimuli 27
1.12   Conjugation of DNA Origami to Lipid 29
1.13   DNA Origami for Biological Applications 29
1.14   Conclusions  33
       References  34
2  Wireframe DNA Origami and Its Application as Toots for Molecular Force Generation
2.1    Introduction 41
2.2    Pre-Origami Wireframe DNA Nanostructures 42
2.3    Hierarchical DNA Origami Wireframe  43
2.4    Entire DNA Origami Design 45
2.5    DNA Origami Wireframe as Tools for Molecular Force Application  50
2.6    Conclusions 54
       References 55
3  Capturing Structural Switching and Serf-Assembly Events Using High-Speed Atomic Force Microscopy 59
3.1    Introduction  59
3.2    DNA Origami Nanomachines  60
3.3    Ion-Responsive Mechanical DNA Origami Devices  60
3.4    Photoresponsive Devices  62
3.5    Two-Dimensional Self-Assembly Processes 64
3.6    Sequential Self-Assembly 66
3.7    Photostimulated Assembly and Disassembly 67
3.8    Conclusions and Perspectives  69
       References  69
4  Advancement of Computer-Aided Design Software and Simulation Tools for Nucleic Acid Nanostructures and DNA Origami 75
4.1    Introduction 75
4.2    General-Purpose Software  76
4.3    Software for Designing Small DNA Nanostructures  78
4.4    Software for Designing DNA Origami  81
4.5    Software for Designing RNA Nanostructures  84
4.6    Software for Designing Base Sequence  84
4.7    Software for Simulating Nucleic Acid Nanostructures  85
4.8    Summary and Future Perspective 86
       References  87
5  Dynamic and Mechanical Applications of DNA Nanostructures in Biophysics 101
5.1    Introduction  101
5.2    Applications 105
5.3    Tools for Quantifying DNA Devices and their Functions  120
5.4    Modeling and Analysis  123
5.5    Conclusion  124
       References 124
6  Plasmonic Nanostructures Assembled by DNA Origami 135
6.1    Introduction  135
6.2    Optical Properties of the DNA Origami-Based Plasmonic Nanostructures  135
6.3    Nanoparticle Functionalization with DNA  138
6.4    DNA Origami-Based Plasmonic Assemblies  140
6.5    Surface-Enhanced Raman Scattering (SERS) and Other Plasmonic Effects  143
6.6    Conclusion  152
       Acknowledgments  152
       References  152
7  Assembly of Nanoparticle Superlattices Using DNA Origami as a Template 155
7.1    Introduction  155
7.2    Gold Nanoparticles  156
7.3    Formation of DNA Origami-Assisted Superlattices  158
7.4    Characterization of Assemblies  160
7.5    Conclusions and Future Perspectives  162
       Acknowledgments  164
       References  164
8  Mechanics of DNA Origami Nanoassemblies  167
8.1    Introduction  167
8.2    Analytical Tools to Investigate Mechanical Properties of Nanoassemblies
8.3    Mechanical Strength of DNA Origami Structures  171
8.4    Applications of Origami Nanostructures by Exploiting their Mechanical Strength  173
8.5    Mechanochemical Properties of DNA Origami  175
8.6    Conclusions  177
       References  177
9  3D DNA Origami as Single-Molecule Biophysical Tools for Dissecting Molecular Motor Functions 181
9.1    Introduction  181
9.2    DNA Origami Nanospring 181
9.3    DNA Origami Thick Filament Mimicking Muscle Structure  187
9.4    Perspective  193
       References  193
10  Switchable DNA Origami Nanostructures and Their Applications 197
10.1   Introduction  197
10.2   Switchable Machines Constructed from DNA Origami Scaffolds  198
10.3   DNA Origami Scaffolds for Defined Mechanical Operations  210
10.4   Switchable Interconnected 2D Origami Assemblies 218
10.5   Dynamic Triggered Switching of Origami for Controlled Release  223
10.6   Switchable Plasmonic Phenomena with DNA Origami Scaffolds 227
10.7   Origami-Guided Organization of Nanoparticles and Proteins 234
10.8   Conclusions and Perspectives  238
       References 239
11  The Effect of DNA Boundaries on Enzymatic Reactions 241
11.1   Introduction 241
11.2   DNA-Scaffolded Single Enzymes  242
11.3   DNA-Scaffolded Enzyme Cascades 247
11.4   On the Proximity Model and Other Hypotheses 250
11.5   Conclusions 254
       Acknowledgments  256
       References  256
12  The Methods to Assemble Functional Proteins on DNA Scaffold and their Applications 261
12.1   Introduction 261
12.2   Overview of the Methods for Arranging Proteins on DNA Scaffolds  262
12.3   DNA-Binding Adaptor for Assembling Proteins on DNA Scaffold and its Application 270
12.4   Summary 278
       References 278
13  DNA Origami for Synthetic Biology: An Integrated Gene Logic-Chip 281
13.1   Introduction 281
13.2   Biomolecule Integration on DNA Nanostructure  281
13.3   Gene Expression Control Using DNA Nanostructure 285
13.4   Summary and Perspective  292
       Acknowledgments 293
       References 293
14  DNA Origami for Molecular Robotics 297
14.1   DNA Origami as a Stage for DNA Walkers and Robotic Arms  297
14.2   Nanomechanical DNA Origami 298
14.3   DNA Origami Used in Combination with Molecular Motors  300
14.4   Future Perspective 301
       References 303
15  DNA origami Nanotechnology for the Visualization, Analysis, and Control of Molecular Events with Nanoscale Precision 305
15.1   Introduction  305
15.2   Designing of DNA Origami Frames for the Direct Observation of DNA Conformational Changes 308
15.3   Direct Observation of DNA Structural Changes in the DNA Origami Frame  308
15.4   Direct Observation and Regulation of Enzyme Reactions in the DNA Origami Frame  315
15.5   Direct Observation of a Mobile DNA Nanomachine using DNA Origami  321
15.6   Limitations of AFM Imaging and Comparison with other Imaging Techniques 326
15.7   Conclusions and Perspectives 326
       References 327
16  Stability and Stabilization of DNA Nanostructures in Biomedical Applications 333
16.1   Threats for DNA Nanostructures 333
16.2   Strategies to Protect DNA Origami Structures 349
       References 362
17  DNA Nanostructures for Cancer Diagnosis and Therapy 379
17.1   Introduction 379
17.2   DNA Nanostructure-Based Diagnostics  380
17.3   DNA Nanostructure-Based Drug Delivery 386
17.4   Challenges and Prospects 394
       References 400
       Index 411