首页 > 新书资源
新书资源(2016年2月)

From molecules to networks : an introduction to cellular and molecular neuroscience / [edited by] John H. Byrne, Ruth Heidelberger, M. Neal Waxham. -- 3rd ed. -- Amsterdam ; Academic Press/Elsevier 2014. – (58.178/F931/3rd ed.)

Contents

Preface to the Third Edition  ix

Preface to the Second Edition  xi

Preface to the First Edition  xiii

List of Contributors  xv

CELLULAR AND MOLECULAR

1. Cellular Components of Nervous Tissue

Neurons   3

Neuroglia  11

Cerebral Vasculature  17

References  20

Suggested Reading  21

2. Subcellular Organization of the Nervous System Organelles and Their Functions

Axons and Dendrites: Unique Structural Components of Neurons  23

Protein Synthesis in Nervous Tissue  28

Cytoskeletons of Neurons and Glial Cells  36

Molecular Motors in the Nervous System  43

Building and Maintaining Nervous System Cells  46

References  52

3. Energy Metabolism in the Brain

Major Pathways of Brain Energy Metabolism  59

Substrates, Enzymes, Pathway Fluxes, and Compartmentation  76

Imaging of Functional Metabolic Activity in Living Brain and In Vivo Assays of Pathway Fluxes  81

Pathophysiological Conditions Disrupt Energy Metabolism  96

Roles of Nutrients and Metabolites in Regulation of Specific Functions and Overall Metabolic Economy  102

Metabolomics, Transcriptomics, and Proteomics  105

Metabolic Scaling Across Species  108

Summary  108

References  109

Further References  117

4. Intracellular Signaling

Signaling Through G-Protein-Linked Receptors  !19

Modulation of Neuronal Function by Protein Kinases and Phosphatases  132

References  145

5. Regulation of Neuronal Gene Expression and Protein Synthesis

The Dogma  149

DNA Structure and Functions  149

RNA Structure and Function  151

Transcription  153

Chromatin and Epigenetic Regulation  157

Control of Gene Expression and Examples in the Nervous System  159

Transcription Factors in Learning and Memory  162

Translational Control  165

Modes of Translational Control Underlying Synaptic Plasticity and Memory  170

References  172

6. Modeling and analysis of intracellular signaling pathways

Intracellular Transport is Modeled at Several Levels of Detail  176

Standard Equations Simplify Modeling of Enzymatic Reactions and Feedback Loops  180

Positive and Negative Feedback Can Support Complex Dynamics of Signaling Pathways  183

Crosstalk Between Signaling Pathways Shapes Stimulus Responses  185

Parameter Estimation  I89

Dynamics Should Usually be Robust to Parameter Variation  190

Parameter Uncertainties Imply the Majority of Models are Qualitative, Not Quantitative  190

Separation of Fast and Slow Processes is an Important Method to Simplify Models  191

Analyzing Flux Control He of Metabolism  191

Special Modeling Techniques are Required for Macromolecular Complexes  192

Stochastic Fluctuations Strongly Affect Reaction Dynamics  193

Genes are Often Organized into Networks Activated by Signaling Pathways  194

Gene Networks can be Modeled at Very Different Levels  195

Gene Network Models Illustrate ways in Which Feedback Generates Complex Dynamics  197

Fluctuations in Molecule Numbers Strongly Influence Genetic Regulation  199

Summary  200

General References  201

Specific References  201

7. Pharmacology and Biochemistry of Synaptic Transmission: Classical Transmitters

Diverse Modes of Neuronal Communication  207

Chemical Transmission  208

Classical Neurotransmitters  211

Summary  235

References  235

8. Nonclassic Signaling in the Brain

Peptide Neurotransmitters  239

Neurotensin as an Example of Peptide Neurotransmitters  242

Unconventional Transmitters  245

Synaptic Transmitters in Perspective  253

References  254

9. Connexin and Pannexin Based Channels in the Nervous System: Gap Junctions and More

Cell Interactions in the Nervous System--The Larger Picture  257

General Properties and Structure of Gap Junction Channels and Hemichannels  257

Connexins in CNS Ontogeny  261

Connexins in Neurons of the Adult CNS  262

Astroglial Connexins  267

Connexins in Oligodendrocytes  270

Connexins in Microglia  270

Connexins in the Blood-Brain Barrier  270

Connexins in Ependimal Cells and Leptomeningeal Cells  271

Pattern of Pannexin Localization in Brain Cells  271

Gap Junction Channels and Hemichannels in Acquired and Genetic Pathologies of the CNS  272

Summary and Perspective  276

References  276

Further Reading  283

10. Neurotransmitter Receptors

Ionotropic Receptors  285

G-Protein-Coupled Receptors  305

References  318

11. Molecular Properties of Ion Channels

Families of Ion Channels  323

Channel Gating  331

Ion Permeation  339

References  344

II PHYSIOLOGY OF ION CHANNELS, EXCITABLE MEMBRANES AND SYNAPTIC TRANSMISSION

12. Membrane Potential and Action Potential

The Membrane Potential  352

The Action Potential  358

References  374

13. Biophysics of Voltage-Gated Ion Channels

Principal Features  377

Major Families of Voltage-Gated Ion Channels  377

VGICs are Highly Sensitive to Membrane Voltage but Current Flow Through all Ion Channels is Influenced by Voltage  380

Abnormal Biophysical Properties of VGICs and Human Disease  381

Structural Features Associated with Unique Biophysical Properties of VGICs  384

Regions of VGICs that Regulate Inactivation  386

Biophysical Properties of Voltage-Gated Ion Channels and Neuronal Function  387

Measuring Biophysical Properties of Voltage-Gated Ion Channels  388

Steady-State Current-Voltage Relationships  390

Voltage-Clamp Recording Methods to Study Biophysical Properties of VGICs  393

Single Ion Channel Currents  398

Modulation of Biophysical Properties of Voltage-Gated Ion Channels  400

Local Changes in Chemical Environment by Second Messenger Action  403

Neurotoxins that Disrupt Biophysical Properties of VGICs  403

The Plasma Membrane Lipid PiP2 Modulates VGICs  404

Calcium Inactivates Cav1 Channels  404

Acknowledgements  405

References  405

14. Dynamical Properties of Excitable Membranes

The Hodgkin-Huxley Model  409

Characterizing the Na+ Conductance  417

A Geometric Analysis of Excitability  425

Summary  440

Acknowledgments  440

References  440

15. Release of Neurotransmitters

Organization of the Chemical Synapse  443

Excitation-Secretion Coupling  448

The Molecular Mechanisms of Neurotransmitter Release  454

Quantal Analysis  466

References  481

16. Postsynaptic Potentials and Synaptic Integration

Ionotropic Receptors: Mediators of Fast Excitatory and Inhibitory Synaptic Potentials  489

Metabotropic Receptors: Mediators of Slow Synaptic Potentials  501

Integration of Synaptic Potentials  504

Summary  505

References  507

Further Reading  507

17. Cable Properties and Information Processing in Dendrites

Basic Tools: Cable Theory and Compartmental Models  509

Spread of Steady-State Signals  509

Spread of Transient Signals  511

Dynamic Properties of the Passive Electrotonic Structure  516

Active Dendritic Properties  519

Backpropagation of Action Potentials into Dendrites  521

Active Dendrites Amplify Synaptic Inputs  523

Active Dendrites Control Neuronal Output  525

Ca2+ Signaling in Dendritic Spines  525

Conclusion  527

References  528

III INTEGRATION

18. Synaptic Plasticity

Introduction  533

Short-Term Plasticity  533

Long-Term Plasticity  540

References  555

19. Information Processing in Neural Networks

Information Processing  563

Neural Representation  565

Encoding and Decoding  568

Iconic Neural Circuits  575

Neuroplasticity and Neuromodulation  578

Example Circuits  580

Summary  586

References  587

20. Learning and Memory: Basic Mechanisms

Paradigms have been Developed to Study Associative and Nonassociative Learning  591

Invertebrate Studies: Key Insights from Aplysia into Basic Mechanisms of Learning  592

Mechanisms Underlying Associative Learning in Aplysia  596

Classical Conditioning in Vertebrates: Discrete Responses and Fear Reactions as Models of Associative Learning  600

How Does a Change in Synaptic Strength Store a Complex Memory?  623

Summary  625

References  625

Suggested Readings  637

21. Molecular Mechanisms of Neurological Disease

Introduction  639

Alzheimer's Disease  639

Parkinson's Disease  641

Prion Diseases  644

Schizophrenia  646

Phenylketonuria  647

Amyotrophic Lateral Sclerosis  649

Trinucleotide Repeat Diseases  651

Fragile X Syndrome  652

Huntington's Disease  655

Genetic Heterogeneity in a Non-CNS Disease Charcot-Marie-Tooth  656

Summary and Conclusion  658

References  658

Index  663