首页 > 新书资源
新书资源(2015年9月)

Developments in electrochemistry : science inspired by Martin Fleischmann / editors, Derek Pletcher, Zhong-Qun Tian, David E. Williams. -- Chichester, West Sussex : John Wiley & Sons, Inc., 2014. – (54.24/D489)

Contents

    Contents
    
    1 Martin Fleischmann - The Scientist and the Person
    2 A Critical Review of the Methods Available for Quantitative Evaluation of Electrode Kinetics at Stationary Macrodisk Electrodes
    2.1 DC Cyclic Voltammetry
    2.2 AC Voltammetry
    2.3 Experimental Studies
    2.4 Conclusions and Outlook
    References
    3 Electrocrystallization: Modeling and Its Application
    3.1 Modeling Electrocrystallization Processes
    3.2 Applications of Models
    3.3 Summary and Conclusions
    References
    4 Nucleation and Growth of New Phases on Electrode Surfaces
    4.1 An Overview of Martin Fleischmann's Contributions to Electrochemical
    4.2 Electrochemical Nucleation with Diffusion-Controlled Growth
    4.3 Mathematical Modeling of Nucleation and Growth Processes
    4.4 The Nature of Active Sites
    4.5 Induction Times and the Onset of Electrochemical Phase Formation Processes
    4.6 Conclusion
    References
    5 Organic Electrosynthesis
    5.1 Indirect Electrolysis
    5.2 Intermediates for Families of Reactions
    5.3 Selective Fluorination
    5.4 Two-Phase Electrolysis
    5.5 Electrode Materials
    5.6 Towards Pharmaceutical Products
    5.7 Future Prospects
    References
    6 Electrochemical Engineering and Cell Design
    6.1 Principles of Electrochemical Reactor Design
    6.2 Decisions During the Process of Cell Design
    6.3 The Influence of Electrochemical Engineering on the Chlor-Alkali Industry
    6.4 Parallel Plate Cells
    6.5 Redox Flow Batteries
    6.6 Rotating Cylinder Electrode Cells
    6.7 Conclusions
    References
    7 Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS): Early History, Principles, Methods, and Experiments 113
    7.1 Early History of Electrochemical Surface-Enhanced Raman Spectroscopy
    7.2 Principles and Methods of SERS
    7.3 Features of EC-SERS
    7.4 EC-SERS Experiments
    Acknowledgments
    References
    8 Applications of Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS)
    8.1 Pyridine Adsorption on Different Metal Surfaces
    8.2 Interfacial Water on Different Metals
    8.3 Coadsorption of Thiourea with Inorganic Anions
    8.4 Electroplating Additives
    8.5 Inhibition of Copper Corrosion
    8.6 Extension of SERS to the Corrosion of Fe and Its Alloys: Passivity
    8.7 SERS of Corrosion Inhibitors on Bare Transition Metal Electrodes
    8.8 Lithium Batteries
    8.9 Intermediates of Electrocatalysis
    Acknowledgments
    References
    9 In-Situ Scanning Probe Microscopies: Imaging and Beyond
    9. l Principle of In-Situ STM and In-Situ AFM
    9.2 In-Situ STM Characterization of Surface Electrochemical Processes
    9.3 In-Situ AFM Probing of Electric Double Layer
    9.4 Electrochemical STM Break-Junction for Surface Nanostructuring and Nanoelectronics and Molecular Electronics
    9.5 Outlook
    References
    10 In-Situ Infrared Spectroelectrochemical Studies of the Hydrogen Evolution Reaction 183
    10.1 The H+/H2 Couple
    10.2 Single-Crystal Surfaces
    10.3 Subtractively Normalized Interfacial Fourier Transform Infrared Spectroscopy
    10.4 Surface-Enhanced Raman Spectroscopy
    10.5 Surface-Enhanced IR Absorption Spectroscopy
    10.6 In-Situ Sum Frequency Generation Spectroscopy
    10.7 Spectroscopy at Single-Crystal Surfaces
    10.8 Overall Conclusions
    References
    11 Electrochemical Noise: A Powerful General Tool
    11.1 Instrumentation
    11.2 Applications
    11.3 Conclusions
    References
    12 From Microelectrodes to Scanning Electrochemical Microscopy
    12.1 The Contribution of Microelectrodes to Electroanalytical Chemistry
    12.2 Scanning Electrochemical Microscopy (SECM)
    12.3 Conclusions
    References
    13 Cold Fusion After A Quarter-Century: The Pd/D System
    13.1 The Reproducibility Issue
    13.2 Palladium-Deuterium Loading
    13.3 Electrochemical Calorimetry
    13.4 Isoperibolic Calorimetric Equations and Modeling
    13.5 Calorimetric Approximations
    13.6 Numerical Integration of Calorimetric Data
    13.7 Examples of Fleischmann's Calorimetric Applications
    13.8 Reported Reaction Products for the Pd/D System
    13.9 Present Status of Cold Fusion
    Acknowledgments
    References
    14 In-Situ X-Ray Diffraction of Electrode Surface Structure 261
    14.1 Early Work
    14.2 Synchrotron-Based In-Situ XRD
    14.3 Studies Inspired by Martin Fleischmann's Work
    14.4 Conclusions
    References
    15 Tribocorrosion
    15.1 Introduction and Definitions
    15.2 Particle-Surface Interactions
    15.3 Depassivation and Repassivation Kinetics
    15.4 Models and Mapping
    15.5 Electrochemical Monitoring of Erosion-Corrosion
    15.6 Tribocorrosion within the Body: Metal-on-Metal Hip Joints
    15.7 Conclusions
    Acknowledgments
    References
    16 Hard Science at Soft Interfaces
    16.1 Charge Transfer Reactions at Soft Interfaces
    16.2 Electrocatalysis at Soft Interfaces
    16.3 Micro- and Nano-Soft Interfaces
    16.4 Plasmonics at Soft Interfaces
    16.5 Conclusions and Future Developments
    References
    17 Electrochemistry in Unusual Fluids
    17.1 Electrochemistry in Plasmas
    17.2 Electrochemistry in Supercritical Fluids
    17.3 Conclusions
    Acknowledgments
    References
    18 Aspects of Light-Driven Water Splitting
    18.1 A Very Brief History of Semiconductor Electrochemistry
    18.2 Thermodynamic and Kinetic Criteria for Light-Driven Water Splitting
    18.3 Kinetics of Minority Carrier Reactions at Semiconductor Electrodes
    18.4 The Importance of Electron-Hole Recombination
    18.5 Fermi Level Splitting in the Semiconductor-Electrolyte Junction
    18.6 A Simple Model for Light-Driven Water-Splitting Reaction
    18.7 Evidence for Slow Electron Transfer During Light-Driven Water Splitting
    18.8 Conclusions
    Acknowledgments
    References
    19 Electrochemical Impedance Spectroscopy
    19.1 Theory
    19.2 The Point Defect Model
    19.3 The Passivation of Copper in Sulfide-Containing Brine
    19.4 Summary and Conclusions
    Acknowledgments
    References
    Index