首页 > 新书资源
新书资源(2012年7月)

Methods in cell biology. v. 95, Microtubules, in vitro / edited by Leslie Wilson, John J. Correia. — Amsterdam : Elsevier, c2010. – (58.1574/M592/v.95)

Contents

    CONTENTS
    
    Contributors
    Preface
    SECTION I Isolation and Biochemistry of Tubulin and Characterization of Antibodies and Isotypes
    1. Preparation of Microtubule Protein and Purified Tubulin from Bovine Brain by Cycles of Assembly and Disassembly and Phosphocellulose Chromatography
    I. Introduction
    II. Protocols
    III. Buffer Compositions
    IV. Concluding Comments
    References
    2. Isolating Tubulin from Nonneural Sources
    I. Why Tubulin from Nonneural Sources?
    II. General Principles of Tubulin Purification
    III. Specific Properties of Distinct Nonneural Sources
    IV. Genetic Manipulation of Tubulin Genes
    V. Isolation of Tubulin: Theme and Variation
    VI. Protocol Notes
    VII. Summary
    References
    3. Characterization of Anti-β-tubulin Antibodies
    I. Introduction
    II. The Characterization ofAA2, a Pan-specific Anti-β-tubulin Monoclonal Antibody That Reacts with All Vertebrate β-Tubulin Isotypes (Gene Products)
    III. The Characterization of Isotype-Specific β-Tubulin Monoclonal and Polyclonal Antibodies
    IV. The Characterization of Antibodies That Recognize the Glutamyl Side Chain of Glutamylated Proteins
    V. Summary
    References
    4. Expression Profiling of Tubulin Isotypes and Microtubule-Interacting Proteins Using Real-Time Polymerase Chain Reaction
    I. Introduction and Rationale
    II. Methods and Materials
    III. Results and Discussion
    IV. Summary
    References
    5. Nondenaturing Electrophoresis as a Tool to Investigate Tubulin Complexes
    I. Introduction
    II. Rationale
    III. Methods
    IV. Materials
    V. Discussion
    VI. Summary
    References
    6. Mass Spectrometry Analysis of C-Terminal Posttranslational Modifications of Tubulins
    I. Introduction
    II. Methods
    III. Results and Discussion
    IV. Conclusion
    References
    7. Methods in Tubulin Proteomics
    I. Introduction
    II. Methods
    III. Summary
    References
    SECTION II Microtubule Structure and Dynamics
    8. Cryo-EM Studies of Microtubule Structural Intermediates and Kinetochore-Microtubule Interactions
    I. Introduction
    II. Rationale
    III. Methods
    IV. Discussion
    V. Summary
    References
    9. High-Resolution Imaging of Microtubules and Cytoskeleton Structures by Atomic Force Microscopy
    I. Introduction to AFM Imaging of Biomolecules
    II. Rationale
    III. AFM Principle and Operation Mode
    IV. Practical Aspects of Microtubules Adsorption on Surface and AFM Imaging
    V. AFM Images in Air of Microtubule
    VI. AFM Imaging in Air of Tubulin or Microtubule: Protein Interactions
    VII. Conclusion
    References
    10. Using Computational Modeling to Understand Microtubule Dynamics: A Primer for Cell Biologists
    I. Introduction
    II. Mathematical and Computational Modeling: A Primer
    III. Using Modeling to Understand Microtubule Dynamics
    IV. Conclusions
    References
    11. Analysis of Dynamic Instability of Steady-State Microtubules In Vitro by Video-Enhanced Differential Interference Contrast Microscopy with an Appendix by Emin Oroudjev
    I. Introduction
    II. Method
    III. Summary and Conclusion
    References
    Appendix
    I. Introduction
    II. MT-LHAP and Its Features
    III. Instructions to Use MT-LHAP
    IV. Conclusion
    References
    12. Nanometer-Resolution Microtubule Polymerization Assays Using Optical Tweezers and Microfabricated Barriers
    I. Introduction
    II. Rationale
    III. Methods
    IV. Materials
    V. Discussion
    VI. Sunnnary
    References
    13. Microtubule Dynamics Reconstituted In Vitro and Imaged by Single-Molecule Fluorescence Microscopy
    I. Introduction
    II. Single-Molecule TIRF Microscopy
    III. List of Reagents
    IV. Choice of Fluorophore/Protein Labeling
    V. (Anti-)blinking/Photo-Toxicity/Photo-Bleaching Cocktails
    VI. Preparation of GMPCPP-Stabilized Microtubules
    VII. Glass Treatment and Sample Chamber Preparation
    VIII. Binding of Microtubules and Passivation of Surfaces
    IX. Dynamic Microtubule Assays
    References
    14. Studying Kinesin Motors by Optical 3D-Nanometry in Gliding Motility Assays
    I. Introduction
    II. Setup of Gliding Motility Assays
    III. Analysis of Microtubule and Quantum Dot Movements
    IV. Future Directions
    Reagents
    References
    SECTION III Drugs
    15. Analysis of Tubulin Oligomers by Analytical Ultracentrifugation
    I. Introduction
    II. Materials and Methods
    III. Results and Discussion
    IV. Summary
    References
    16. Determination of Drag Binding to Microtubules In Vitro
    I. Introduction
    II. Methods
    III. Materials
    References
    17. Fluorescence Spectroscopic Methods to Analyze Drug-Tubulin Interactions
    I. Introduction
    II. Colchicine Binding to Tubulin
    III. Vinblastine Binding to Tubulin
    IV. Taxol Binding to Microtubules
    V. Determination of Binding Constants Using Extrinsic Fluorescent Probes
    VI. Conclusion
    References
    18. A Tubulin Polymerization Microassay Used to Compare Ligand Efficacy
    I. Introduction
    II. Rationale
    III. Methods
    IV. Summary
    References
    19. Fluorescent Taxoid Probes for Microtubule Research
    I. Introduction
    II. Materials
    III. Methods
    IV. Applications and Discussion
    V. Summary
    References
    20. The Binding of Vinca Domain Agents to Tubulin: Structural and Biochemical Studies
    I. Introduction
    II. Rationale
    III. Structural Studies of the Tubulin-Vinca Domain Ligand Interactions
    IV. Fluorescence Is Useful to Monitor Binding of Vinca Domain Ligands to Tubulin in Solution
    V. Effects of Vinca Domain Ligands on Tubulin Biochemical Properties
    VI. Discussion
    References
    21. Measurement of Ligand Binding to Tubulin by Sulfhydryl Reactivity
    I. Introduction and Rationale
    II. Methods
    III. Discussion
    References
    SECTION IV Interactions with Motors and MAPs
    22. Probing Interactions of Tubulin with Small Molecules, Peptides, and Protein Fragments by Solution Nuclear Magnetic Resonance
    I. Introduction
    II. Rationale
    III. Methods
    IV. Application to Tubulin/Microtubules Interactions
    V. Conclusion
    VI. Appendix I. Materials
    References
    23. Microtubule and MAPs: Themlodynamics of Complex Formation by AUC, ITC, Fluorescence, and NMR
    I. Introduction
    II. Rationale
    III. Materials and Methods
    IV. Discussion
    V. Concluding Remarks
    References
    24. Quantitative Analysis of MAP-Mediated Regulation of Microtubule Dynamic Instability In Vitro-Focus on Tau
    I. Introduction and Rationale
    II. Methods
    III. Materials
    IV. Summary
    References
    25. Structure and Dynamics of the Kinesin-Microtubule Interaction Revealed by Fluorescence Polarization Microscopy
    I. Introduction
    II. Rationale
    III. Methods
    IV. Fluorescent Labeling for FPM
    V. Discussion and Future Directions
    References
    26. Multiple Color Single Molecule TIRF Imaging and Tracking of MAPs and Motors
    I. Introduction
    II. TIRF Optics
    III. Labeling Molecules
    IV. Examples and Protocols
    V. Conclusions and Outlook
    References
    27. Studying Plus-End Tracking at Single Molecule Resolution Using TIRF Microscopy
    I. Introduction
    II. Rationale
    III. Methods
    IV. Discussion
    References
    28. Fluorescence Microscopy Assays on Chemically Functionalized Surfaces for Quantitative Imaging of Microtubule, Motor, and +TIP Dynamics
    I. Introduction
    II. Rationale
    III. Materials
    IV. Methods
    V. Surface Chemistry on Glass
    VI. Fluorescence Microscopy Assays
    VII. Discussion
    VIII. Conclusion
    References
    SECTION V Functional Extracts and Force Measurements
    29. Quantitative Characterization of Filament Dynamics by Single-Molecule Lifetime Measurements
    I. Introduction to Cytoskeletal Filament Dynamics
    II. Single-Molecule Lifetime Measurements
    III. Theoretical Foundations
    IV. Results and Conclusion
    References
    30. Extracting the Mechanical Properties of Microtubules from Thermal Fluctuation Measurements on an Attached Tracer Particle
    I. Introduction
    II. Rationale
    III. Materials
    IV. Methods
    V. Discussion
    VI. Summary
    References
    31. In Vitro Assays to Study Force Generation at Dynamic Microtubule Ends
    I. Introduction
    II. Materials
    III. Methods
    IV. Results
    V. Conclusion/Discussion
    References
    32. Reconstitution and Functional Analysis of Kinetochore Subcomplexes
    I. Introduction
    II. Methods
    Ill. Conclusion
    References
    33. In Vitro Assays to Study the Tracking of Shortening Microtubule Ends and to Measure Associated Forces
    I. Introduction
    II. Rationale
    III. Materials and Methods
    IV. Summary and Discussion
    References
    Index
    Volume in Series