首页 > 新书资源
新书资源(2011年9月)

Hormones in neurodegeneration, neuroprotection, and neurogenesis / edited by Achille G. Gravanis and Synthia H. Mellon. — Weinheim : Wiley-VCH, c2011. – (58.17436/H812)

Contents

    CONTENTS
    
    Part I Estrogens, Progestins, Allopregnanolone and Neuroprotection 1
    1 Interactions of Estradiol and Insulin-like Growth Factor-I in Neuroprotection: Implications for Brain Aging and Neurodegeneration 3
    1.1 Introduction: Hormones, Brain Aging, and Neurodegeneration 3
    1.2 Estradiol, IGF-I, Brain Aging, and Neuroprotection 4
    1.3 Molecular Interactions of Estrogen Receptors and IGF-I Receptor in the Brain
    1.4 Regulation of IGF-I Receptor Signaling by Estradiol in the Brain 5
    1.5 Regulation of Estrogen Receptor Transcriptional Activity by IGF-I in Neural Cells 6
    1.6 Implications of the Cross Talk between Estrogen Receptors and IGF-I Receptors for Brain Aging, and Neurodegeneration 6
    Acknowledgment 8
    References 8
    2 Structure-Nongenomic Neuroprotection Relationship of Estrogens and Estrogen-Derived Compounds 13
    2.1 Introduction 13
    2.2 In vitro Assessments of Structure-Neuroprotective Activity Relationships 14
    2.3 In vivo Assessment of Structure-Neuroprotective Activity Relationships 20
    2.4 In vitro Assessment of Structure-Cell Signaling Relationships 20
    2.5 Summary 24
    Acknowledgment 24
    References 24
    3 Progestins and Neuroprotection: Why the Choice of Progestin Matters 29
    3.1 Introduction 29
    3.2 The Biology of Progesterone 30
    3.3 Membrane-Associated Progesterone Receptors 31
    3.4 Progesterone-Induced Protection 32
    3.5 Mechanisms Underlying Progesterone's Protective Effects 33
    3.6 Medroxyprogesterone Acetate 34
    Acknowledgments 37
    References 37
    4 Endogenous and Synthetic Neurosteroids in the Treatment of Niemann-Pick Type C Disease 41
    4.1 Introduction 41
    4.2 Niemann-Pick Type C Disease as a Model of Disrupted Neurosteroidogenesis 43
    4.3 Steroidogenesis and Neurosteroidogenesis in NP-C 44
    4.4 Treatment of NP-C Mice with Allopregnanolone 45
    4.5 Mechanism of Allopregnanolone Action: GABAA Receptor 46
    4.6 Mechanism of Allopregnanolone Action: Pregnane-X Receptor 48
    4.7 Mechanism of Allopregnanolone Action: Reduction of Cellular Oxidative Stress
    4.8 Conclusions - Mechanisms of Allopregnanolone Action in Treatment of NP-C and Other Neurodegenerative Diseases 49
    Acknowledgments 51
    References 51
    Part II Glucocorticoids, Dehydroepiandrosterone, Neuroprotection and Neuropathy
    5 Glucocorticoids, Developmental "Programming," and the Risk of Affective Dysfunction 63
    5.1 Introduction to Programming 64
    5.2 Programming 65
    5.3 Glucocorticoids and Fetal Development 66
    5.4 Glucocorticoids: the Endocrine Programming Factor 68
    5.5 Fetal Tissue Glucocorticoid Sensitivity 72
    5.6 Stress and Glucocorticoids: Key Programmers of the Brain 74
    5.7 CNS Programming Mechanisms 76
    5.8 Glucocorticoid Programming in Humans 78
    5.9 Future Perspectives and Therapeutic Opportunities 82
    5.10 Overview 83
    References 84
    6 Regulation of Structural Plasticity and Neurogenesis during Stress and Diabetes; Protective Effects of Glucocorticoid Receptor Antagonists 103
    6.1 The Stress Response 103
    6.2 HPA Axis and Glucocorticoids 104
    6.3 Glucocorticoid Actions 104
    6.4 Feedback Regulation 104
    6.5 Stress and Depression 105
    6.6 Stress-Induced Viability Changes in the Hippocampus: Effect on Function, Volume, Cell Number, and Apoptosis 106
    6.7 Effects of Stress on Dendritic Atrophy, Spine, and Synaptic Changes 107
    6.8 Adult Hippocampal Neurogenesis 107
    6.9 Effect of Stress on Adult Hippocampal Neurogenesis 109
    6.10 Normalization of the Effects of Stress on the Hippocampus by Means of GR Blockade 110
    6.11 Normalization of Hippocampal Alterations during Diabetes Mellitus Using the GR Antagonist Mifepristone 113
    6.12 Concluding Remarks 115
    Acknowledgments 115
    Disclosure 115
    References 116
    7 Neuroactive Steroids and Peripheral Neuropathy 121
    7.1 Introduction 121
    7.2 Regulation of Neuroactive Steroid Responsiveness in Peripheral Nerves 122
    7.3 Schwann Cell Responses to Neuroactive Steroids 123
    7.4 Sexually Dimorphic Changes of Neuroactive Steroid Levels Induced by Pathology in Peripheral Nerves 126
    7.5 Neuroactive Steroids as Protective Agents in PNS 126
    7.6 Chemotherapy-Induced Peripheral Neuropathy 128
    7.7 Concluding Remarks 129
    Acknowledgments 129
    References 129
    8 Neuroprotective and Neurogenic Properties of Dehydroepiandrosterone and its Synthetic Analogs 137
    8.1 Introduction 137
    8.2 Neuroprotective and Neurogenic Effects of DHEA in Hippocampal Neurons 138
    8.3 Neuroprotective Effects of DHEA in Nigrostriatal Dopaminergic Neurons 140
    8.4 Neuroprotective Effects of DHEA in Autoimmune Neurodegenerative Processes
    8.5 Neuroprotective Effects of DHEA against Brain Ischemia and Trauma 142
    8.6 Signaling Pathways Involved in the Effects of DHEA on Neuronal Cell Fate 144
    8.7 Therapeutic Perspectives of DHEA and its Synthetic Analogs in Neurodegenerative Diseases 146
    References 147
    9 Neurosteroids and Pain 155
    9.1 Introduction 155
    9.2 General Background on Neurosteroids 155
    9.3 Overview on Pain 156
    9.4 Involvement of Endogenous Neurosteroids in the Control of Pain 157
    9.5 Conclusion 164
    Acknowledgments 164
    References 164
    Part III Polypeptide Hormones and Neuroprotection 171
    10 The Insulin/IGF-1 System in Neurodegeneration and Neurovascular Disease 173
    10.1 Introduction 173
    10.2 Insulin and Insulin Growth Factors 174
    10.3 Local versus Systemic Actions 174
    10.4 Insulin/IGF Signaling Pathway 175
    10.5 The Insulin/IGF Axis in the Brain 176
    10.6 Insulin/IGF and Neuroprotection 176
    10.7 Alzheimer's Disease 178
    10.8 Parkinson's Disease 179
    10.9 Vascular Dementia 179
    10.10 Neurovascular Degeneration 180
    10.11 Conclusion 182
    References 182
    11 Leptin Neuroprotection in the Central Nervous System 189
    11.1 Introduction 189
    11.2 Mutation of Leptin or Leptin Receptors 192
    11.3 Neurotrophic Role of Leptin 193
    11.4 Leptin Neuroprotection against Disorders of the Central Nervous System 193
    11.5 Significance 199
    References 199
    12 Somatostatin and Neuroprotection in Retina 205
    12.1 Introduction 205
    12.2 Somatostatin and Related Peptides 206
    12.3 Somatostatin Receptors and Signaling 206
    12.4 Somatostatin and its Receptors in Retina 206
    12.5 Localization of Somatostatin Receptors in Retinal Neurons 207
    12.6 Somatostatin Receptor Function in Retinal Circuitry 209
    12.7 Neuroprotection by Somatostatin Analogs 212
    12.8 Mechanisms of SRIF's Neuroprotection 213
    12.9 Therapeutic Potential of Somatostatin Agents 216
    12.10 Conclusions 217
    Acknowledgments 217
    Abbreviations 218
    References 218
    13 Neurotrophic Effects of PACAP in the Cerebellar Cortex 227
    13.1 Expression of PACAP and its Receptors in the Developing Cerebellum 227
    13.2 Effects of PACAP on Granule Cell Proliferation 229
    13.3 Effects of PACAP on Granule Cell Migration 229
    13.4 Effects of PACAP on Granule Cell Survival 231
    13.5 Effects of PACAP on Granule Cell Differentiation 231
    13.6 Functional Relevance 233
    Acknowledgments 234
    References 234
    14 The Corticotropin-Releasing Hormone in Neuroprotection 237
    14.1 Introduction 237
    14.2 The CRH Family of Proteins and Molecular Signal Transduction 238
    14.3 From the Physiology to the Pathophysiology of CRH 239
    14.4 CRH and Neurodegenerative Conditions 240
    14.5 Protective Activities of CRH 240
    14.6 Lessons from the Heart 244
    14.7 Outlook 245
    References 245
    15 Neuroprotective and Neurogenic Effects of Erythropoietin 251
    15.1 Introduction 251
    15.2 EPO in Models of Neonatal Hypoxic-Ischemic Brain Injury 251
    15.3 EPO in Models of Ischemic Stroke in Adults 253
    15.4 EPO in Models of Traumatic Brain Injury and Spinal Cord Trauma 257
    15.5 EPO in Experimental Autoimmune Encephalomyelitis 257
    15.6 EPO in Models of Peripheral Neuropathy 258
    15.7 Summary 260
    References 260
    Part IV Hormones and Neurogenesis 265
    16 Thyroid Hormone Actions on Glioma Ceils 267
    16.1 Introduction 267
    16.2 Origins of Glioma 267
    16.3 Glioma Cell Biology 268
    16.4 Thyroid Hormone Analogs, Transport, and Metabolism 270
    16.5 Thyroid Hormones and Brain Development 270
    16.6 Nongenomic Actions of Thyroid Hormones 271
    16.7 Hypothyroidism Suppresses Growth of Glioma in Patients 273
    16.8 Molecular Mechanisms of Hypothyroidism-Induced Clinical Suppression of Glioma Progression 273
    16.9 Future Perspectives 275
    References 276
    17 Gonadal Hormones, Neurosteroids, and Clinical Progestins as Neurogenic Regenerative Agents: Therapeutic Implications 281
    17.1 Introduction 281
    17.2 Gonadal Hormones, Neurosteroids, and Neurogenesis 282
    17.3 Neurosteroid Regulation of Adult Neurogenesis 290
    17.4 Gonadal Steroids, Clinical Progestins, and Neurosteroids as Neuroregenerative Therapeutics: Challenges and Strategies 292
    References 295
    18 Gonadotropins and Progestogens: Obligatory Developmental Functions during Early Embryogenesis and their Role in Adult Neurogenesis, Neuroregeneration and Neurodegeneration 305
    18.1 Introduction 305
    18.2 Hormonal Regulation of Human Embryogenesis 305
    18.3 Progesterone: an Essential Neurotrophic Hormone during All Phases of Life
    18.4 Age-Related Loss of Progesterone: Implications in the Pathophysiology of Neurodegenerative Diseases 314
    18.5 Conclusion 318
    References 319
    19 Human Neural Progenitor Cells: Mitotic and Neurogenic Effects of Growth Factors, Neurosteroids, and Excitatory Amino Acids 331
    19.1 Introduction 331
    19.2 Neural Stem/Progenitor Cells as a Model of Human Cortical Development 331
    19.3 Mitotic and Neurogenic Effects of a Neurosteroid: Dehydroepiandrosterone (DHEA) 332
    19.4 Glutamate Enhances Proliferation and Neurogenesis in hNPCs 336
    19.5 Increased Neurogenic "Radial Glial"-like Cells within Human Neurosphere Cultures 338
    19.6 Conclusions 341
    Acknowledgments 342
    References 342
    20 Corticosterone, Dehydroepiandrosterone, and Neurogenesis in the Adult Hippocampus 347
    20.1 Background 347
    20.2 Glucocorticoids and Neurogenesis in the Adult Hippocampus 348
    20.3 Conclusion 360
    Acknowledgments 360
    References 360
    Index 367