首页 > 新书资源
新书资源(2010年11月)

Evolutionary genomics and systems biology / edited by Gustavo Caetano-Anolles. — Hoboken, N.J. : Wiley-Blackwell, c2010. – (58.21/E93e)

Contents

    Contents
    
    Preface
    Contributors
    Part I Evolution of life
    1. Evolutionary Genomics Leads the Way 3
    1.1 Introduction 3
    1.2 Evolution and the Power of Genomes 4
    1.3 The Problem of Deep Phylogeny and "The Tree" 5
    1.4 Fred, the Last Common Ancestor of Modem Eukaryotes 7
    1.5 Eukaryote Origins: Continuity from the RNA World? 10
    1.6 Minimal Genomes and Reductive Evolution 12
    1.7 Evolutionary Genomics for the Future 13
    References 14
    2. Current Approaches to Phylogenomic Reconstruction
    2.1 Phylogenomics and Supermatrices 17
    2.2 Phylogenetic Signal Versus Nonphylogenetic Signal 19
    2.3 Probabilistic Models and Nonphylogenetic Signal 22
    2.4 Reduction of Nonphylogenetic Signal Under Fixed Models 28
    2.5 CAT Model 31
    2.6 Case Study: Cambrian Explosion 33
    2.7 Conclusion 35
    References 36
    3. The Universal Tree of Life and the Last Universal Cellular Ancestor: Revolution and Counterrevolutions 43
    3.1 Introduction 43
    3.2 The Woesian Revolution 45
    3.3 A Rampant "Prokaryotic" Counterrevolution 47
    3.4 How to Polarize Characters Without a Robust Root? 50
    3.5 The Hidden Root: When the Weather Became Cloudy 51
    3.6 LUCA and Its Companions 54
    3.7 The Problem of Horizontal Gene Transfer and Ancient Phylogenies: Trees Versus Gene Webs 54
    3.8 The Nature of the RNA World 55
    3.9 The DNA Replication Paradox and the Nature of LUCA 56
    3.10 When Viruses Find Their Way into the Universal Tree of Life 58
    3.11 Future Directions 59
    References 60
    4. Eukaryote Evolution: The Importance of the Stem Group 63
    4.1 Introduction 63
    4.2 Interpreting Trees 68
    4.3 Moving Beyond the Deep Roots of Eukaryotes 70
    4.4 Concluding Remarks 76
    References 77
    5. The Role of Information in Evolutionary Genomics of Bacteria
    5.1 Introduction 81
    5.2 Revisiting Information 83
    5.3 Ubiquitous Functions for Life 84
    5.4 The Cenome and the Paleome 87
    5.5 Functions Corresponding to Nonessential Persistent Genes 89
    5.6 A Ubiquitous Information-Gaining Process: Making a Young Organism from an Aged One 89
    5.7 Provisional Conclusion 91
    Acknowledgments 92
    References 92
    6. Evolutionary Genomics of Yeasts 95
    6.1 Introduction 95
    6.2 A Brief History of Hemiascomycetous Yeast Genomics 96
    6.3 The Scientific Attractiveness of S. cerevisiae 98
    6.4 Evolutionary Genomics of Hemiascomycetes 104
    6.5 Surprises 111
    6.6 What Next? 113
    Acknowledgments 115
    Epilogue 115
    References 115
    Part II Evolution of Molecular Repertoires
    7. Genotypes and Phenotypes in the Evolution of Molecules 123
    7.1 The Landscape Paradigm 123
    7.2 Molecular Phenotypes 125
    7.3 The RNA Model 132
    7.4 Conclusions and Outlook 148
    Acknowledgments 149
    References 149
    8. Genome Evolution Studied Through Protein Structure
    8.1 Introduction 153
    8.2 Structural Granularity and Its Implications 156
    8.3 Protein Domains in the Study of Genome Rearrangements 158
    8.4 Protein Domain Gain and Loss 160
    8.5 And in the Beginning ... 161
    8.6 But Let Us Not Forget the Influence of the Environment 161
    8.7 Conclusions 162
    References 163
    9. Chromosomal Rearrangements in Evolution
    9.1 Introduction 165
    9.2 Genome Representation 166
    9.3 Constructing Genome Permutations from Sequence Data 167
    9.4 Genomic Distances 168
    9.5 Reconstruction of Ancestors and Evolutionary Scenarios 174
    9.6 Recent Applications on Large Genomes 177
    9.7 Challenges and Promising New Approaches 178
    Acknowledgment 179
    References 179
    10. Molecular Structure and Evolution of Genomes
    10.1 Introduction 183
    10.2 Overview of Considerations in Studying Protein Evolution 184
    10.3 Function and Evolutionary Genomics 186
    10.4 Integrating Inferences to Detect and Interpret Adaptation: An Example with Snake Metabolic Proteins 194
    10.5 Conclusion 200
    References 200
    11. The Evolution of Protein Material Costs
    11.1 Introduction 203
    11.2 Protein Material Costs 204
    11.3 An Example: Proteomic Sulfur Sparing 205
    11.4 Episodic Nutrient Scarcity Can Shape Protein Material Costs 205
    11.5 Highly Expressed Gene Products Often Exhibit Reduced Material Costs
    11.6 Material Costs and the Evolution of Genomes 207
    11.7 Material Costs and Other Costs of Making Proteins 208
    11.8 Conclusions 209
    Acknowledgments 209
    References 209
    12. Protein Domains as Evolutionary Units
    12.1 Modular Protein Evolution 213
    12.2 Domain-Based Homology Identification 215
    12.3 Domains in Genomics and Proteomics 222
    12.4 The Coverage Problem 225
    12.5 Conclusion 227
    References 228
    13. Domain Family Analyses to Understand Protein Function Evolution
    13.1 Introduction 231
    13.2 Universal Domain Structure Families Identified in the Last Universal Common Ancestor 232
    13.3 Some Domain Families Recur More Frequently and Are Structurally Very Diverse
    13.4 Correlation of Structural Diversity in Superfamilies with Functional Diversity 234
    13.5 To What Extent Does Function Vary Between Homologous? 238
    13.6 How Safely Can Function Be Inherited Between Homologues? 245
    13.7 How Are Domain Families Distributed in Protein Complexes? 247
    References 248
    14. Noncoding RNA
    14.1 Introduction 251
    14.2 Ancient RNAs 254
    14.3 Domain-Specific RNAs 259
    14.4 Conserved ncRNAs with Limited Distribution 267
    14.5 ncRNAs from Repeats and Pseudogenes 276
    14.6 mRNA-like ncRNAs 277
    14.7 RNAs with Dual Functions 281
    14.8 Concluding Remarks 282
    Acknowledgments 283
    References 283
    15. Evolutionary Genomics of microRNAs and Their Relatives
    15.1 Introduction 295
    15.2 The Small RNA Zoo 296
    15.3 Small RNA Biogenesis 298
    15.4 Computational microRNA Prediction 302
    15.5 microRNA Targets 304
    15.6 Evolution of microRNAs 307
    15.7 Origin(s) of microRNA Families 313
    15.8 Genomic Organization 316
    15.9 Summary and Outlook 320
    References 321
    16. Phylogenetic Utility of RNA Structure: Evolution's Arrow and Emergence of Early Biochemistry and Diversified
    16.1 Introduction 329
    16.2 Structural Characters and Derived Phylogenetic Trees 333
    16.3 Applications 344
    16.4 Conclusions 353
    Acknowledgments 354
    References 354
    17. A Hitchhiker's Guide to Evolving Networks
    17.1 Introduction 363
    17.2 Phylogenetic Continuities, Biological Coherence 367
    17.3 Nested Structural Networks 371
    17.4 Optimal Networks 374
    17.5 The Emperor's BLAST Search Revisited 381
    17.6 Will the Real Missing Link Please Stand Up? 388
    17.7 All's Well 389
    Acknowledgments 391
    References 391
    18. Evolution of Metabolic Networks 397
    18.1 Introduction 397
    18.2 Metabolic Network Properties 398
    18.3 Network Models For Metabolic Evolution 403
    18.4 Dynamic Models Of Genome-Level Metabolic Function 407
    References 410
    19. Single-Gene and Whole-Genome Duplications and the Evolution of Protein-Protein Interaction Networks
    19.1 Introduction 413
    19.2 Evolution of PINs 414
    19.3 Single-Gene Duplications 416
    19.4 Whole-Genome Duplications 416
    19.5 Diploidization Phase 416
    19.6 Dosage Balance Hypothesis 417
    19.7 Types of Interactions 417
    19.8 WGDs, Transient Interactions, and Organismal Complexity 418
    19.9 Studies on PPIs of Ohnologues 419
    19.10 Concerns About the Methods of Analysis and the Quality of the Data 420
    19.11 The Importance of Medium-Scale Studies: the Case of Dimerization 422
    19.12 Evolution of Dimerization Networks 424
    19.13 Conclusions 426
    Acknowledgment 426
    References 427
    20. Modularity and Dissipation in Evolution of Macromolecular Structures, Functions, and Networks
    20.1 Introduction 431
    20.2 Biological Structure as an Emergent Property of Dissipative Systems
    20.3 Information and Its Dissipation 435
    20.4 Time, Thermodynamic Irreversibility, and Growth of Order in the Universe
    20.5 Information Dissipation and Modularity Pervade Structure in Biology
    20.6 Modularity and Dissipation in Protein Evolution 443
    20.7 Conclusions 447
    Acknowledgments 448
    References 448
    Index