首页 > 新书资源
新书资源(2013年8月)

Biomolecular information processing : from logic systems to smart sensors and actuators / edited by Evgeny Katz. — Weinheim, Germany : Wiley-VCH, c2012. – (58.178/B615b)

Contents

    Contents
    
    preface XI I1
    List of Contributors XV
    1 Biomolecular Computing: From Unconventional Computing to "Smart" Biosensors and Actuators - Editorial Introduction 1
    References 5
    2 Peptide-Based Computation: Switches, Gates, and Simple Arithmetic 9
    2.1 Introduction 9
    2.2 Peptide-Based Replication Networks 10
    2.3 Logic Gates within Ternary Networks 13
    2.4 Symmetry and Order Requirements for Constructing the Logic Gates 16
    2.5 Taking the Steps toward More Complex Arithmetic 19
    2.6 Experimental Logic Gates 21
    2.7 Adaptive Networks 24
    2.8 Peptide-Based Switches and Gates for Molecular Electronics
    2.9 Summary and Conclusion 29
     Acknowledgments 30
     References 30
    3 Biomolecular Electronics and Protein-Based Optical Computing
    3.1 Introduction 33
    3.2 Biomolecular and Semiconductor Electronics 34
    3.3 Bacteriorhodopsin as a Photonic and Holographic Material for Bioelectronics 40
    3.4 Fourier Transform Holographic Associative Processors 42
    3.5 Three-Dimensional Optical Memories 45
    3.6 Genetic Engineering of Bacteriorhodopsin for Device Applications 51
    3.7 Future Directions 53
    Acknowledgments 54
     References 54
    4 Bioelectronic Devices Controlled by Enzyme-Based Information Processing Systems 61
    4.1 Introduction 61
    4.2 Enzyme-Based Logic Systems Producing pH Changes as Output Signals 62
    4.3 Interfacing of the Enzyme Logic Systems with Electrodes Modified with Signal-Responsive Polymers 64
    4.4 Switchable Biofuel Cells Controlled by the Enzyme Logic Systems 68
    4.5 Biomolecular Logic Systems Composed of Biocatalytic and Biorecognition Units and Their Integration with Biofuel Cells 70
    4.6 Processing of Injury Biomarkers by Enzyme Logic Systems Associated with Switchable Electrodes 74
    4.7 Summary and Outlook 77
     Acknowledgments 78
     References 78
    5 Enzyme Logic Digital Biosensors for Biomedical Applications 81
    5.1 Introduction 81
    5.2 Enzyme-Based Logic Systems for Identification of Injury Conditions 82
    5.3 Multiplexing of Injury Codes for the Logic Gates 85
    5.4 Parallel Operation of Enzyme Scaling Up the Complexity of the Biocomputing Systems for Biomedical Applications - Mimicking Biochemical Pathways 89
    5.5 Application of Filter Systems for Improving Digitalization of the Output Signals Generated by Enzyme Logic Systems for Injury Analysis 94
    5.6 Conclusions and Perspectives 96
     Acknowledgments 98
     Appendix 98
    References 99
    6 Information Security Applications Based on Biomolecular Systems 103
    6.1 Introduction 103
    6.2 Molecular and Bio-molecular Keypad Locks 104
    6.3 Antibody Encryption and Steganography 108
    6.4 Bio-barcode 113
    6.5 Conclusion 114
     Acknowledgments 114
     References 114
    7 Biocomputing: Explore Its Realization and Intelligent Logic Detection 117
    7.1 Introduction 117
    7.2 DNA Biocomputing 119
    7.3 Aptamer Biocomputing 121
    7.4 Enzyme Biocomputing 124
    7.5 Conclusions and Perspectives 128
     References 129
    8 Some Experiments and Models in Molecular Computing and Robotics 133
    8.1 Introduction 133
    8.2 From Gates to Programmable Automata 133
    8.3 From Random Walker to Molecular Robotics 139
    8.4 Conclusions 142
     Acknowledgments 143
     References 143
    9 Biomolecular Finite Automata 145
    9.1 Introduction 145
    9.2 Biomolecular Finite Automata 146
    9.3 Biomolecular Finite Transducer 167
    9.4 Applications in Developmental Biology 172
    9.5 Outlook 176
     References 178
    10 In Vivo Information Processing Using RNA Interference 181
    10.1 Introduction 181
    10.2 RNA Interference-Based Logic 183
    10.3 Building the Sensory Module 189
    10.4 Outlook 195
     References 197
    11 Biomolecular Computing Systems 199
    11.1 Introduction 199
    11.2 DNA as a Tool for Molecular Programming 200
    11.3 Birth of DNA Computing Adleman's Experiment and Extensions 203
    11.4 Computation Using DNA Tiles 205
    11.5 Experimental Advances in Purely Hybridization-Based Computation 209
    11.6 Experimental Advances in Enzyme-Based DNA Computing 212
    11.7 Biochemical DNA Reaction Networks 217
    11.8 Conclusion: Challenges in DNA-Based Biomolecular Computation 218
     Acknowledgments 221
     References 221
    12 Enumeration Approach to the Analysis of Interacting Nucleic Acid Strands 225
    12.1 Introduction 225
    12.2 Definitions and Notations for Set and Multiset 226
    12.3 Chemical Equilibrium and Hybridization Reaction System 227
    12.4 Symmetric Enumeration Method 230
    12.5 Applying SEM to Nucleic Acid Strands Interaction 236
    12.6 Conclusions 243
     References 244
    13 Restriction Enzymes in Language Generation and Plasmid Computing 245
    13.1 Introduction 245
    13.2 Wet Splicing Systems 246
    13.3 Dry Splicing Systems 249
    13.4 Splicing Theory: Its Original Motivation and Its Extensive Unforeseen Developments 252
    13.5 Computing with Plasmids 253
    13.6 Fluid Memory 254
    13.7 Examples of Aqueous Computations 255
    13.8 Final Comments about Computing with Biomolecules 260
     References 261
    14 Development of Bacteria-Based Cellular Computing Circuits for Sensing and Control in Biological Systems 265
    14.1 Introduction 265
    14.2 Cellular Computing Circuits 267
    14.3 Conclusion 276
     Acknowledgments 277
     References 277
    15 The Logic of Decision Making in Environmental Bacteria 279
    15.1 Introduction 279
    15.2 Building Models for Biological Networks 281
    15.3 Formulation and Simulation of Regulatory Networks 283
    15.4 Boolean Analysis of Regulatory Networks 285
    15.5 Boolean Description of m-xylene Biodegradation by P. putida rot-2: the TOL logicome 289
    15.6 Conclusion and Outlook 298
     Acknowledgments 299
     References 299
    16 Qualitative and Quantitative Aspects of a Model for Processes Inspired by the Functioning of the Living Cell 303
    16.1 Introduction 303
    16.2 Reactions 304
    16.3 Reaction Systems 305
    16.4 Examples 307
    16.5 Reaction Systems with Measurements 310
    16.6 Generalized Reactions 312
    16.7 A Generic Quantitative Model 315
    16.8 Approximations of Gene Expression Systems 316
    16.9 Simulating Approximations by Reaction Systems 318
    16.10 Discussion 319
     Acknowledgments 321
     References 321
    17 Computational Methods for Quantitative Submodel Comparison 323
    17.1 Introduction 323
    17.2 Methods for Model Decomposition 324
    17.3 Methods for Submodel Comparison 327
    17.4 Case Study 332
    17.5 Discussion 342
    Acknowledgments 343
    References 343
    18 Conclusions and Perspectives 347
    References 349
    Index 351