首页 > 新书资源
新书资源(2013年8月)

NMR of biomolecules : towards mechanistic systems biology / edited by Ivano Bertini, Kathleen S. McGreevy, and Giacomo Parigi. — Weinheim, Germany : Wiley-VCH, c2012.—(58.178/N964)

Contents

    Contents
    
    Preface
    List of Contributors XXIII
    List of Abbreviations XXIX
    Part One Introduction
    1 NMR and its Place in Mechanistic Systems Biology 3
    2 Structure of Biomolecules: Fundamentals 7
    2.1 Structural Features of Proteins 7
    2.2 Nucleic Acids 21
    3 What Can be Learned About the Structure and Dynamics of Biomolecules from NMR
    3.1 Proteins Studied by NMR 33
    3.2 Nucleic Acids Studied by NMR 47
    Part Two Role of NMR in the Study of the Structure and Dynamics of Biomolecules 51
    4 Determination of Protein Structure and Dynamics 53
    4.1 Determination of Protein Structures 53
    4.2 NMR Restraints 58
    4.3 Structure Calculations 65
    4.4 Validation of Protein Structures 72
    4.5 Protein Dynamics and NMR Observables 76
    4.6 Protocols 83
    4.7 Troubleshooting 92
    Further Reading 94
    5 DNA 97
    5.1 NMR Spectroscopy of DNA 97
    5.2 Assessment of the Folding Topology 99
    5.3 Resonance Assignment through Sequential and Interstrand Interactions 100
    5.4 Pseudorotation of Deoxyribofuranose Rings 104
    5.5 Backbone Conformation 105
    5.6 Natural Abundance Nucleobase Substitutions 106
    5.7 Natural Abundance Heteronuclear Experiments 106
    5.8 Site-Specific Low Isotopic Enrichment 107
    5.9 Translational Diffusion Coefficients 107
    5.10 Determination of Three-Dimensional Structure 107
    5.11 Search for Transient Structures 109
    5.12 Protocols 110
    5.13 Example Experiments and Troubleshooting 114
    Further Reading 115
    6 RNA 119
    6.1 NMR Spectroscopy of RNA 119
    6.2 Preparation of RNA Samples for NMR 120
    6.3 Probing of the RNA Fold 121
    6.4 Assessment of the Spectral Resolution 122
    6.5 Strategy for the Resonance Assignment 123
    6.6 Collection of Structural Information 126
    6.7 Structural Calculation of RNA 128
    6.8 Assessment of Quality of NMR Structures 129
    6.9 Protocols 129
    6.10 Troubleshooting 135
    Further Reading 135
    7 Intrinsically Disordered Proteins 137
    7.1 Intrinsically Disordered Proteins 137
    7.2 Importance of NMR to Study IDPs 140
    7.3 Structural and Dynamic Information on IDPs - NMR Observables 141
    7.4 Protocols 146
    7.5 Troubleshooting 150
    Further Reading 152
    8 Paramagnetic Molecules 155
    8.1 Paramagnetism-Assisted NMR 155
    8.2 Scalar and Dipolar Electron Spin-Nuclear Spin Interactions: Hyperfine Shift 157
    8.3 Scalar and Dipolar Electron Spin-Nuclear Spin Interactions: PRE 159
    8.4 Indirect Electron Spin-Nuclear Spin Effects: Paramagnetism-Induced RDCs 161
    8.5 Cross-Correlation Between Curie and Dipolar Relaxation 162
    8.6 "Good" Metal Ions and "Bad" Metal Ions 163
    8.7 Paramagnetism-Based Drug Discovery 164
    8.8 Protocols 165
    8.9 Troubleshooting 169
    Further Reading 170
    Part Three Role of NMR in the Study of the Structure and Dynamics of Biomolecular Interactions 173
    9 NMR Methodologies for the Analysis of Protein-Protein Interactions 175
    9.1 Introduction 175
    9.2 Dynamics and Ligand Binding 176
    9.3 General Strategy 177
    9.4 Overview of Methods 178
    9.5 Outlook 186
    9.6 Protocols for the Analysis of Protein Complexes 186
    9.7 Troubleshooting 194
    Further Reading 194
    10 Metal-Mediated Interactions 197
    10.1 Theoretical Background 197
    10.2 Protocol for the Structural Determination of a Metal-Mediated Complex 200
    10.3 Example Experiment 202
    10.4 Troubleshooting 202
    Further Reading 203
    11 Protein-Paramagnetic Protein Interactions 205
    11.1 Paramagnetic Sources in Protein Complexes 205
    11.2 Types of NMR Restraints Obtained from Paramagnetic Centers 206
    11.3 Protein Complexes 207
    11.4 Protocols 211
    11.5 Example Experiment 215
    11.6 Troubleshooting 215
    Further Reading 217
    12 Protein-RNA Interactions 219
    12.1 Introduction 219
    12.2 NMR Methodology 221
    12.3 Protocols and Troubleshooting 228
    13 Protein-DNA Interactions 239
    13.1 State of the Art 239
    13.2 Conclusions and Perspectives 242
    13.3 Protocols 243
    13.4 Troubleshooting 251
    Further Reading 252
    Part Four NMR in Drug Discovery 253
    14 High-Throughput Screening and Fragment-Based Design: General Considerations for Lead Discovery and Optimization 255
    14.1 High-Throughput Screening and Fragment-Based Design 255
    14.2 General Aspects of NMR Spectroscopy in Hit Identification and Optimization Processes 257
    14.3 Chemical Shift Perturbation as a Screening Method 261
    Further Reading 263
    15 Ligand-Observed NMR in Fragment-Based Approaches 265
    15.1 Ligand-Observed NMR Spectroscopy 265
    15.2 On the Transient Binding of Small Molecules to the Protein 266
    15.3 Questions Asked by Ligand-Based Fragment Screening 267
    15.4 Summary 274
    15.5 Protocols 274
    15.6 Example Experiments 276
    15.7 Troubleshooting 278
    Further Readings 280
    16 Interactions of Metallodrugs with DNA 283
    16.1 Metallodrugs and DNA Interactions 283
    16.2 Coordinative Binding 286
    16.3 Groove Binding 289
    16.4 Intercalation and Insertion 290
    16.5 Dual Binding (Coordination and Intercalation) 291
    16.6 Protocols 293
    16.7 Tricks and Troubleshooting 294
    Further Reading 295
    17 RNA as a Drug Target 299
    17.1 RNA as a Target for Small Molecules 299
    17.2 Chemical Shift Perturbation and Paramagnetic Relaxation Enhancement 301
    17.3 Nuclear Overhauser Effect-Based Methods 304
    17.4 Fluorine Labeling of RNA 304
    17.5 Ligand-Based Methods 305
    17.6 Protocols 306
    17.7 Troubleshooting 312
    Further Reading 313
    18 Fluorine NMR Spectroscopy for Biochemical Screening in Drug Discovery 315
    18.1 Enzymatic Inhibition Mechanisms 316
    18.2 n-FABS 317
    18.3 Comparison of n-FABS with Other Biophysical Techniques 322
    18.4 Outlook 323
    18.5 Protocols 323
    18.6 Troubleshooting 326
    Further Reading 327
    19 NMR of Peptides 329
    19.1 Introduction 329
    19.2 Resonance Assignment 330
    19.3 Stereostructure and Conformational Restraints 330
    19.4 Structure Calculation 333
    19.5 Importance of Peptide Conformations for Biological Activity 334
    19.6 Protocols 334
    19.7 Troubleshooting 342
    Further Reading 343
    Part Five Solid-State NMR 345
    20 Biomolecular Solid-State NMR/Basics 347
    20.1 Introduction 347
    20.2 NMR Hamiltonian 347
    20.3 Magic Angle Spinning 349
    20.4 Cross-Polarization 350
    20.5 Heteronuclear 1H Decoupling 350
    20.6 Dipolar Recoupling 351
    20.7 Recent Progress: New Probes - Ultrafast MAS - High Magnetic Fields 354
    20.8 Protocols 355
    20.9 Troubleshooting 362
    Further Reading 364
    21 Protein Dynamics in the Solid State 367
    21.1 Introduction 367
    21.2 Basic Concepts 369
    21.3 Coherent versus Incoherent Processes: Decay is not Always Relaxation 370
    21.4 Deuterium as a Probe of Dynamics 371
    21.5 15N and 13C T1 - Spin-Lattice Relaxation 372
    21.6 Protocols 373
    22 Microcrystalline Proteins - An Ideal Benchmark for Methodology Development 377
    22.1 Microcrystalline Protein Sample Preparation 377
    22.2 Sequential Assignment of Proteins 378
    22.3 Structural Restraints 380
    22.4 Paramagnetic Systems 384
    22.5 Benchmarking of the Solid-State NMR Structure Determination Methodology:. Comparison of Structure Calculation Protocols and Accuracy of Structures 386
    22.6 Protocols 389
    22.7 Troubleshooting 391
    Further Reading 392
    23 Structural Studies of Protein Fibrils by Solid-State NMR 395
    23.1 Background 395
    23.2 NMR Spectra of Fibrils 396
    23.3 Outlook 397
    23.4 Protocols and Examples 398
    23.5 Troubleshooting 404
    Further Reading 405
    24 Solid-State NMR on Membrane Proteins: Methods and Applications 407
    24.1 Solid-State NMR of Membrane Proteins 407
    24.2 MAS Applied to Ion Channels and Retinal Proteins 411
    24.3 Protocols 413
    24.4 Troubleshooting 417
    Further Reading 417
    Part Six Frontiers in NMR Spectroscopy 419
    25 Dynamic Nuclear Polarization 421
    25.1 Dynamic Nuclear Polarization at High Magnetic Fields 421
    25.2 Theoretical Background 422
    25.3 Protocols 427
    25.4 Example Experiment 429
    25.5 Perspectives 430
    Further Reading 431
    26 13C Direct Detection NMR 433
    26.1 13C Direct Detection NMR for Biomolecular Applications 433
    26.2 Protocols for Experimental Setup 439
    26.3 Troubleshooting 442
    Further Reading 442
    27 Speeding Up Multidimensional NMR Data Acquisition 445
    27.1 Multidimensional NMR: Basic Concepts and Features 445
    27.2 Fast Methods in N-Dimensional NMR 447
    27.3 Protocols for Fast N-Dimensional NMR and Troubleshooting 457
    Further Reading 465
    28 Metabolomics 467
    28.1 Metabolomics in Systems Biology 467
    28.2 NMR and Metabolomics 469
    28.3 Data Analysis 471
    28.4 Success in the Application of Metabolomics 472
    28.5 Protocols 473
    28.6 Troubleshooting 477
    Further Reading 477
    29 In-Cell Protein NMR Spectroscopy 479
    29.1 Background 479
    29.2 Specific Applications 480
    29.3 Conclusions and Future Directions 485
    29.4 Protocols and Example Experiments 486
    29.5 Troubleshooting 492
    Further Reading 493
    30 Structural Investigation of Cell-Free Expressed Membrane Proteins 497
    30.1 Introduction 497
    30.2 Cell-Free Expression of Membrane Proteins 498
    30.3 Cell-Free Expression in Membrane-Mimetic Environments 499
    30.4 Strategies for Functional Protein Expression 500
    30.5 Cell-Free Approaches for Structural Studies 501
    30.6 Cell-Free Labeling Strategies for Backbone Assignment 502
    30.7 Structure Determination with Limited Nuclear Overhauser Effect Long-Distance Restraints 502
    30.8 Protocols 504
    30.9 Troubleshooting 507
    Further Reading 508
    Part Seven Computational Aspects 509
    31 Grid Computing 511
    31.1 Grid Infrastructure 511
    31.2 e-NMR Web Platform 512
    31.3 Protocols 515
    31.4 Troubleshooting 517
    Further Reading 518
    32 Protein-Protein Docking with HADDOCK 521
    32.1 Protein-Protein Docking: General Concepts 521
    32.2 Gathering Experimental Information for Data-Driven Docking 522
    32.3 How Does HADDOCK Use the Information? 526
    32.4 Protocol: A Guided Tour of the HADDOCK Web Interface 530
    32.5 Troubleshooting 534
    Further Reading 535
    33 Automated Protein Structure Determination Methods 537
    33.1 NMR Experiment-Driven Protein Modeling 537
    33.2 NOE-Based Structure Determination 538
    33.3 Sequence-Specific Resonance Assignment 541
    33.4 NMR Signal Identification 542
    33.5 Perspectives 542
    33.6 Protocols 543
    33.7 Example Structure Determination and Troubleshooting 544
    Further Reading 546
    34 NMR Structure Determination of Protein-Ligand Complexes 549
    34.1 Protein-Ligand Complex Structure Determination by NMR 549
    34.2 Methods for High-Affinity Binders 550
    34.3 Methods for Low-Affinity Binders 552
    34.4 Protocols and Troubleshooting 558
    Further Reading 561
    35 Small Angle X-Ray Scattering/Small Angle Neutron Scattering as Methods Complementary to NMR 563
    35.1 Introduction 563
    35.2 Invariants 566
    35.3 Ab Initio Shape Determination 567
    35.4 Validation of Atomic Models 568
    35.5 Rigid-Body Modeling of Quaternary Structure 568
    35.6 Equilibrium Mixtures and Flexible Systems 569
    35.7 Protocols 570
    35.8 Troubleshooting 573
    Further Reading 574
    References 575
    Index 609