首页 > 新书资源
新书资源(2012年2月)

Enzyme kinetics : principles and methods / Hans Bisswanger. — 2nd, Rev. and Upd. ed. — Weinheim : Wiley-VCH ; Chichester : John Wiley [distributor], c2008. – (58.17435/B623e/2nd ed.)

Contents

    Contents
    
    Preface to the Second English Edition
    Preface to the First English Edition
    Symbols and Abbreviations
    Introduction and Definitions
    References 4
    1 Multiple Equilibria 7
    1.1 Diffusion 8
    1.2 Interaction between Macromolecules and Ligands 12
    1.2.1 Binding Constants 12
    1.2.2 Macromolecules with One Binding Site 13
    1.3 Macromolecules with Identical Independent Binding Sites 14
    1.3.1 General Binding Equation 14
    1.3.2 Graphic Representations of the Binding Equation 20
    1.3.2.1 Direct and Linear Diagrams 20
    1.3.2.2 Analysis of Binding Data from Spectroscopic Titrations 22
    1.3.3 Binding of Different Ligands, Competition 25
    1.3.4 Non-competitive Binding 27
    1.4 Macromolecules with Non-identical, Independent Binding Sites 29
    1.5 Macromolecules with Identical, Interacting Binding Sites, Cooperativity
    1.5.1 The Hill Equation 32
    1.5.2 The Adair Equation 34
    1.5.3 The Pauling Model 37
    1.5.4 Mlosteric Enzymes 38
    1.5.5 The Symmetry or Concerted Model 39
    1.5.6 The Sequential Model and Negative Cooperativity 44
    1.5.7 Analysis of Cooperativity 48
    1.5.8 Physiological Aspects of Cooperativity 50
    1.5.9 Examples of Mlosteric Enzymes 52
    1.5.9.1 Hemoglobin 52
    1.5.9.2 Aspartate Transcarbamoylase 53
    1.5.9.3 Aspartokinase 54
    1.5.9.4 Phosphofructokinase 55
    1.5.9.5 Allosteric Regulation of the Glycogen Metabolism 55
    1.5.9.6 Membrane Bound Enzymes and Receptors 55
    1.6 Non-identical, Interacting Binding Sites 56
    References 57
    2 Enzyme Kinetics 59
    2.1 Reaction Order 59
    2.1.1 First Order Reactions 60
    2.1.2 Second Order Reactions 61
    2.1.3 Zero Order Reactions 62
    2.2 Steady-State Kinetics and the Michaelis-Menten Equation 63
    2.2.1 Derivation of the Michaelis-Menten Equation 63
    2.3 Analysis of Enzyme Kinetic Data 66
    2.3.1 Graphical Representations of the Michaelis-Menten Equation 66
    2.3.1.1 Direct and Semi-logarithmic Representations 66
    2.3.1.2 Direct Linear Plots 73
    2.3.1.3 L0inearization Methods 75
    2.3.2 Analysis of Progress Curves 77
    2.3.2.1 Integrated Michaelis-Menten Equation 78
    2.3.2.2 Determination of Reaction Rates 80
    2.3.2.3 Graphic Methods for Rate Determination 82
    2.3.2.4 Graphic Determination of True Initial Rates 84
    2.4 Reversible Enzyme Reactions 85
    2.4.1 Rate Equation for Reversible Enzyme Reactions 85
    2.4.2 The Haldane Relationship 87
    2.4.3 Product Inhibition 88
    2.5 Enzyme Inhibition 91
    2.5.1 Unspecific Enzyme Inhibition
    2.5.2 Irreversible Enzyme Inhibition
    2.5.2.1 General Features of Irreversible
    2.5.2.2 Suicide Substrates 93
    2.5.2.3 Transition State Analogs 95
    2.5.2.4 Analysis of Irreversible Inhibitions 96
    2.5.3 Reversible Enzyme Inhibition 98
    2.5.3.1 General Rate Equation 98
    2.5.3.2 Non-Competitive Inhibition and Graphic Representation of Inhibition Data
    2.5.3.3 Competitive Inhibition 107
    2.5.3.4 Uncompetitive Inhibition 111
    2.5.3.5 Partially Non-competitive Inhibition 113
    2.5.3.6 Partially Uncompetitive Inhibition 115
    2.5.3.7 Partially Competitive Inhibition 117
    2.5.3.8 Noncompetitive and Uncompetitive Product Inhibition 119
    2.5.3.9 Substrate Inhibition 120
    2.5.4 Enzyme Reactions with Two Competing Substrates 121
    2.5.5 Different Enzymes Catalyzing the Same Reaction 123
    2.6 Multi-substrate Reactions 124
    2.6.1 Nomenclature 124
    2.6.2 Random Mechanism 126
    2.6.3 Ordered Mechanism 131
    2.6.4 Ping-pong Mechanism 132
    2.6.5 Product Inhibition in Multi-substrate Reactions 135
    2.6.6 Haldane Relationships in Multi-substrate Reactions 135
    2.6.7 Mechanisms with more than Two Substrates 136
    2.6.8 Other Nomenclatures for Multi-substrate Reactions 138
    2.7 Derivation of Rate Equations of Complex Enzyme Mechanisms 138
    2.7.1 King-Altmann Method 138
    2.7.2 Simplified Derivations Applying Graph Theory 144
    2.7.3 Combination of Equilibrium and Steady State Approach 145
    2.8 Kinetic Treatment of Allosteric Enzymes 147
    2.8.1 Hysteretic Enzymes 148
    2.8.2 Kinetic Cooperativity, the Slow Transition Model 149
    2.9 pH and Temperature Dependence of Enzymes 151
    2.9.1 pH Optimum and Determination of pK Values 151
    2.9.2 pH Stability 153
    2.9.3 Temperature Dependence 154
    2.10 Isotope Exchange 158
    2.10.1 Isotope Exchange Kinetics 159
    2.10.2 Isotope Effects 163
    2.10.2.1 Primary Kinetic Isotope Effect 163
    2.10.2.2 Influence of the Kinetic Isotope Effect on Vand Km 164
    2.10.2.3 Other Isotope Effects 165
    2.11 Special Enzyme Mechanisms 166
    2.11.1 Ribozymes 166
    2.11.2 Polymer Substrates 167
    2.11.3 Kinetics of Immobilized Enzymes 168
    2.11.3.1 External Diffusion Limitation 169
    2.11.3.2 Internal Diffusion Limitation 172
    2.11.3.3 Inhibition of Immobilized Enzymes 173
    2.11.3.4 pH and Temperature Behavior of Immobilized Enzymes 174
    2.11.4 Transport Processes 175
    2.11.5 Enzyme Reactions at Membrane Interfaces 178
    2.12 Application of Statistical Methods in Enzyme Kinetics 185
    2.12.1 General Remarks 185
    2.12.2 Statistical Terms Used in Enzyme Kinetics 189
    References 190
    3 Methods 195
    3.1 Methods for Investigation of Multiple Equilibria 195
    3.1.1 Equilibrium Dialysis and General Aspects of Binding Measurements 197
    3.1.1.1 Equilibrium Dialysis 197
    3.1.1.2 Control Experiments and Sources of Error 200
    3.1.1.3 Continuous Equilibrium Dialysis 203
    3.1.2 Ultrafiltration 206
    3.1.3 Gel Filtration 207
    3.1.3.1 Batch Method 208
    3.1.3.2 The Method of Hummel and Dreyer 209
    3.1.3.3 Other Gel Filtration Methods 210
    3.1.4 Ultracentrifugation 211
    3.1.4.1 Fixed Angle Ultracentrifugation Methods 212
    3.1.4.2 Sucrose Gradient Centrifugation 214
    3.1.5 Surface Plasrnon Resonance 218
    3.2 Electrochemical Methods 219
    3.2.1 The Oxygen Electrode 220
    3.2.2 The CO2 Electrode 222
    3.2.3 Potentiornetry, Redox Potentials 223
    3.2.4 The pH-stat 223
    3.2.5 Polarography 225
    3.3 Calorimetry 226
    3.4 Spectroscopic Methods 228
    3.4.1 Absorption Spectroscopy 230
    3.4.1.1 The Lambert-Beer Law 230
    3.4.1.2 Spectral Properties of Enzymes and Ligands 231
    3.4.1.3 Structure of Spectrophotorneters 235
    3.4.1.4 Double Beam Spectrophotometer 237
    3.4.1.5 Difference Spectroscopy 238
    3.4.1.6 The Dual Wavelength Spectrophotometer 241
    3.4.1.7 Photochemical Action Spectra 242
    3.4.2 Bioluminescence 243
    3.4.3 Fluorescence 243
    3.4.3.1 Quantum Yield 243
    3.4.3.2 Structure of Spectrofluorirneters 244
    3.4.3.3 Perturbations of Fluorescence Measurements 246
    3.4.3.4 Fluorescent Compounds (Fluorophores) 247
    3.4.3.5 Radiationless Energy Transfer 252
    3.4.3.6 Fluorescence Polarization 254
    3.4.3.7 Pulse Fluorirnetry 255
    3.4.4 Circular Dichroism and Optical Rotation Dispersion 257
    3.4.5 Infrared and Raman Spectroscopy 262
    3.4.5.1 IR Spectroscopy 263
    3.4.5.2 Raman Spectroscopy 263
    3.4.5.3 Applications 264
    3.4.6 Electron Paramagnetic Resonance Spectroscopy 264
    3.5 Measurement of Fast Reactions 267
    3.5.1 Flow Methods 268
    3.5.1.1 The Continuous Flow Method 268
    3.5.1.2 The Stopped-flow Method 271
    3.5.1.3 Measurement of Enzyme Reactions by Flow Methods 274
    3.5.1.4 Determination of the Dead Time 276
    3.5.2 Relaxation Methods 277
    3.5.2.1 The Temperature Jump Method 278
    3.5.2.2 The Pressure Jump Method 281
    3.5.2.3 The Electric Field Method 283
    3.5.3 Flash Photolysis, Pico- and Femto-second Spectroscopy 283
    3.5.4 Evaluation of Rapid Kinetic Reactions (Transient Kinetics) 285
    References 289
    Subject Index 293