首页 > 新书资源
新书资源(2009年11月)

Biomechanics : concepts and computation / Cees Oomens, Marcel Brekelmans, Frank Baaijens. — Cambridge ; New York : Cambridge University Press, 2009. – (58.17111/O59)

Contents

    Contents
    
    1 Vector calculus
     1.1 Introduction
     1.2 Definition of a vector
     1.3 Vector operations
     1.4 Decomposition of a vector with respect to a basis
     Exercises
    2 The concepts of force and moment
     2.1 Introduction
     2.2 Definition of a force vector
     2.3 Newton's Laws
     2.4 Vector operations on the force vector
     2.5 Force decomposition
     2.6 Representation of a vector with respect to a vector basis
     2.7 Column notation
     2.8 Drawing convention
     2.9 The concept of moment
     2.10 Definition of the moment vector
     2.11 The two-dimensional case
     2.12 Drawing convention of moments in three dimensions
     Exercises
    3 Static equilibrium
     3.1 Introduction
     3.2 Static equilibrium conditions
     3.3 Free body diagram
     Exercises
    4 The mechanical behaviour of fibres
     4.1 Introduction
     4.2 Elastic fibres in one dimension
     4.3 A simple one-dimensional model of a skeletal muscle
     4.4 Elastic fibres in three dimensions
     4.5 Small fibre stretches
     Exercises
    5 Fibres: time-dependent behaviour
     5.1 Introduction
     5.2 Viscous behaviour
     5.3 Linear visco-elastic behaviour
     5.4 Harmonic excitation of visco-elastic materials
     5.5 Appendix: Laplace and Fourier transforms
     Exercises
    6 Analysis of a one-dimensional continuous elastic medium
     6.1 Introduction
     6.2 Equilibrium in a subsection of a slender structure
     6.3 Stress and strain
     6.4 Elastic stress-strain relation
     6.5 Deformation of an inhomogeneous bar
     Exercises
    7 Biological materials and continuum mechanics
     7.1 Introduction
     7.2 Orientation in space
     7.3 Mass within the volume V
     7.4 Scalar fields
     7.5 Vector fields
     7.6 Rigid body rotation
     7.7 Some mathematical preliminaries on second-order tensors
     Exercises
    8 Stress in three-dimensional continuous media
     8.1 Stress vector
     8.2 From stress to force
     8.3 Equilibrium
     8.4 Stress tensor
     8.5 Principal stresses and principal stress directions
     8.6 Mohr's circles for the stress state
     8.7 Hydrostatic pressure and deviatoric stress
     8.8 Equivalent stress
     Exercises
    9 Motion: the time as an extra dimension
     9.1 Introduction
     9.2 Geometrical description of the material configuration
     9.3 Lagrangian and Eulerian description
     9.4 The relation between the material and spatial time derivative
     9.5 The displacement vector
     9.6 The gradient operator
     9.7 Extra displacement as a rigid body
     9.8 Fluid flow
     Exercises
    10 Deformation and rotation, deformation rate and spin
     10.1 Introduction
     10.2 A material line segment in the reference and current configuration
     10.3 The stretch ratio and rotation
     10.4 Strain measures and strain tensors and matrices
     10.5 The volume change factor
     10.6 Deformation rate and rotation velocity
     Exercises
    11 Local balance of mass, momentum and energy
     11.l Introduction
     11.2 The local balance of mass
     11.3 The local balance of momentum
     11.4 The local balance of mechanical power
     11.5 Lagrangian and Eulerian description of the balance equations
     Exercises
    12 Constitutive modelling of solids and fluids
     12.1 Introduction
     12.2 Elastic behaviour at small deformations and rotations
     12.3 The stored internal energy
     12.4 Elastic behaviour at large deformations and/or large rotations
     12.5 Constitutive modelling of viscous fluids
     12.6 Newtonian fluids
     12.7 Non-Newtonian fluids
     12.8 Diffusion and filtration
     Exercises
    13 Solution strategies for solid and fluid mechanics problems
     13.1 Introduction
     13.2 Solution strategies for deforming solids
     13.3 Solution strategies for viscous fluids
     13.4 Diffusion and filtration
     Exercises
    14 Solution of the one-dimensional diffusion equation by means of the Finite Element Method
     14.1 Introduction
     14.2 The diffusion equation
     14.3 Method of weighted residuals and weak form of the model problem
     14.4 Polynomial interpolation
     14.5 Galerkin approximation
     14.6 Solution of the discrete set of equations
     14.7 Isoparametric elements and numerical integration
     14.8 Basic structure of a finite element program
     14.9 Example
     Exercises
    15 Solution of the one-dimensional convection-diffusion equation by means of the Finite Element Method
     15.1 Introduction
     15.2 The convection-diffusion equation
     15.3 Temporal discretization
     15.4 Spatial discretization
     Exercises
    16 Solution of the three-dimensional convection-diffusion equation by means of the Finite Element Method
     16.1 Introduction
     16.2 Diffusion equation
     16.3 Divergence theorem and integration by parts
     16.4 Weak form
     16.5 Galerkin discretization
     16.6 Convection-diffusion equation
     16.7 Isoparametric elements and numerical integration
     16.8 Example
     Exercises
    17 Shape functions and numerical integration
     17.1 Introduction
     17.2 Isoparametric, bilinear quadrilateral element
     17.3 Linear triangular element
     17.4 Lagrangian and Serendipity elements
     17.5 Numerical integration
     Exercises
    18 Infinitesimal strain elasticity problems
     18.1 Introduction
     18.2 Linear elasticity
     18.3 Weak formulation
     18.4 Galerkin discretization
     18.5 Solution
     18.6 Example
     Exercises
    References
    Index