首页 > 新书资源
新书资源(2009年5月)

Bioinformatics for geneticists : a bioinformatics primer for the analysis of genetic data / [edited by] Michael R. Barnes. — 2nd ed. — Chichester : wiley, c2007. –(58.17115/B615/2nd ed.)

Contents

        Contents
    
    Foreword
    Preface
    Contributors
    Glossary
    SECTION I AN INTRODUCTION TO BIOINFORMATICS FOR THE GENETICIST
    1 Bioinformatics challenges for the geneticist
    1.1 Introduction
    1.2 The role of bioinformatics in genetics research
    1.3 Genetics in the post-genome era
    1.4 Conclusions
    References
    2 Managing and manipulating genetic data
    2.1 Introduction
    2.2 Basic principles
    2.3 Data entry and storage
    2.4 Data manipulation
    2.5 Examples of code
    2.6 Resources
    2.7 Summary
    SECTION II MASTERING GENES, GENOMES AND GENETIC VARIATION DATA
    3 The HapMap - A haplotype map of the human genome
    3.1 Introduction
    3.2 Accessing the data
    3.3 Application of HapMap data in association studies
    3.4 Future perspectives
    References
    4 Assembling a view of the human genome
    4.1 Introduction
    4.2 Genomic sequence assembly
    4.3 Annotation from a distance: the generalities
    4.4 Annotation up dose and personal: the specifics
    4.5 Annotation: the next generation
    References
    5 Finding, delineating and analysing genes
    5.1 Introduction
    5.2 Why learn to predict and analyse genes in the complete genome era?
    5.3 The evidence cascade for gene products
    5.4 Dealing with the complexities of gene models
    5.5 Locating known genes in the human genome
    5.6 Genome portal inspection
    5.7 Analysing novel genes
    5.8 Conclusions and prospects
    References
    6 Comparative genomics
    6.1 Introduction
    6.2 The genomic landscape
    6.3 Concepts
    6.4 Practicalities
    6.5 Technology
    6.6 Applications
    6.7 Challenges and future directions
    6.8 Conclusion
    References
    SECTION III BIOINFORMA'I1CS FOR GENETIC STUDY DESIGN AND ANALYSIS
    7 Identifying mutations in single gene disorders
    7.1 Introduction
    7.2 Clinical ascertainment
    7.3 Genome-wide mapping of monogenic diseases
    7.4 The nature of mutation in monogenic diseases
    7.5 Considering epigenetic effects in mendelian traits
    7.6 Summary
    References
    8 From Genome Scan to Culprit Gene
    8.1 Introduction
    8.2 Theoretical and practical considerations
    8.3 A stepwise approach to Locus refinement and candidate gene identification
    8.4 Conclusion
    8.5 A List of the software tools and Web links mentioned in this chapter
    References
    9 Integrating Genetics, Genomics and Epigenomics to Identify Disease Genes
    9.1 Introduction
    9.2 Dealing with the (draft) human genome sequence
    9.3 Progressing Loci of interest with genomic information
    9.4 In silica characterization of the IBD5 Locus - a case study
    9.5 Drawing together biological rationale - hypothesis building
    9.6 Identification of potentially functional polymorphisms
    9.7 Conclusions
    References
    10 Toots for statistical genetics
    10.1 Introduction
    10.2 Linkage analysis
    10.3 Association analysis
    10.4 Linkage disequilibrium
    10.5 Quantitative trait Locus (QTL) mapping in experimental crosses
    10.6 Closing remarks
    References
    SECTION IV MOVING FROM ASSOCIATED GENES TO DISEASE ALLELES
    11 Predictive functional analysis of polymorphisms: An overview
    11.1 Introduction
    11.2 Principles of predictive functional analysis of polymorphisms
    11.3 The anatomy of promoter regions and regulatory elements
    11.4 The anatomy of genes
    11.5 Pseudogenes and regulatory mRNA
    11.6 Analysis of novel regulatory elements and motifs in nucleotide sequences
    11.7 Functional analysis of non-synonymous coding polymorphisms
    11.8 Integrated tools for functional analysis of genetic variation
    11.9 A note of caution on the prioritization of in silica predictions for further laboratory investigation
    11.10 Conclusions
    References
    12 Functional in silico analysis of gene regulatory polymorphism 281
    12.1 Introduction
    12.2 Predicting regulatory regions
    12.3 Modelling and predicting transcription factor-binding sites
    12.4 Predicting regulatory elements for splicing regulation
    12.5 Evaluating the functional importance of regulatory polymorphisms
    References
    13 Amino-acid properties and consequences of substitutions 311
    13.1 Introduction
    13.2 Protein features relevant to amino-acid behaviour
    13.3 Amino-acid classifications
    13.4 Properties of the amino acids
    13.5 Amino-acid quick reference
    13.6 Studies of how mutations affect function
    13.7 A summary of the thought process
    References
    14 Non-coding RNA bioinformatics
    14.1 Introduction
    14.2 The non-coding (nc) RNA universe
    14.3 Computational analysis of ncRNA
    14.4 ncRNA variation in disease
    14.5 Assessing the impact of variation in ncRNA
    14.6 Data resources to support small ncRNA analysis
    14.7 Conclusions
    References
    SECTION V ANALYSIS AT THE GENETIC AND GENOMIC DATA INTERFACE
    15 What are microarrays?
    15.1 Introduction
    15.2 Principles of the application of microarray technology
    15.3 Complementary approaches to microarray analysis
    15.4 Differences between data repository and research database
    15.5 Descriptions of freely available research database packages
    References
    16 Combining quantitative trait and gene-expression data
    16.1 Introduction: the genetic regulation of endophenotypes
    16.2 Transcript abundance as a complex phenotype
    16.3 Scaling up genetic analysis and mapping models for microarrays
    16.4 Genetic correlation analysis
    16.5 Systems genetic analysis
    16.6 Using expression QTLs to identify candidate genes for the regulation of complex phenotypes
    16.7 Conclusions
    References
    17 Bioinformatics and cancer genetics
    17.1 Introduction
    17.2 Cancer genomes
    17.3 Approaches to studying cancer genetics
    17.4 General resources for cancer genetics
    17.5 Cancer genes and mutations
    17.6 Copy number alterations in cancer
    17.7 Loss of heterozygosity in cancer
    17.8 Gene-expression data in cancer
    17.9 Multiplatform gene target identification
    17.10 The epigenetics of cancer
    17.11 Tumour modelling
    17.12 Conclusions
    References
    18 Needle in a haystack? Dealing with 500 000 SNP genome scans
    18.1 Introduction
    18.2 Genome scan analysis issues
    18.3 Ultra-high-density genome-scanning technologies
    18.4 Bioinformatics for genome scan analysis
    18.5 Conclusions
    References
    19 A bioinformatics perspective on genetics in drug discovery and development 495
    19.1 Introduction
    19.2 Target genetics
    19.3 Pharmacogenetics (PGx)
    19.4 Conclusions: toward 'personalized medicine'
    References
    Appendix I
    Appendix II
    Index