首页 > 新书资源
新书资源(2008年2月)

Fundamental molecular biology / Lizabeth A. Allison. — Malden, MA : Blackwell, c2007.—(58.178/A438)

Contents

    Contents
    
    Preface, xviii
    1 The beginnings of motecutar biology, 1
    1.1 Introduction
    1.2 Historicat perspective
    2 The structure of DNA, 13
    2.1 Introduction
    2.2 Primary structure: the components of nucteic acids
    2.3 Significance of 5' and 3'
    2.4 Nomenctature of nucteotides
    2.5 The tength of RNA and DNA
    2.6 Secondary structure of DNA
    2.7 Unusuat DNA secondary structures
    2.8 Tertiary structure of DNA
    3 Genome organization: from nucteotides to chromatin, 37
    3.1 Introduction
    3.2 Eukaryotic genome
    3.5 Bacteriophages and mammalian DNA viruses
    3.6 0rganelle genomes: chloroplasts and mitochondria
    3.7 RNA-based genomes
    4 The versatitity of RNA, 54
    4.1 Introduction
    4.2 Secondary structure of RNA
    4.3 Tertiary structure of RNA
    4.4 Kinetics of RNA folding
    4.5 RNA is involved in a wide range of cellular processes
    4.6 Historical perspective: the discovery of RNA catalysis
    4.7 Ribozymes catalyze a variety of chemical reactions
    5 From gene to protein, 79
    5.1 Introduction
    5.2 The central dogma
    5.3 The genetic code
    5.4 Protein structure
    5.5 Protein function
    5.6 Protein folding and misfolding
    6 DNA replication and tetomere maintenance, 108
    6.1 Introduction
    6.2 Historical perspective
    6.3 DNA synthesis occurs from 5' --> 3'
    6.4 DNA polymerases are the enzymes that catalyze DNA synthesis
    6.5 Semidiscontinuous DNA replication
    6.6 Nuclear DNA replication in eukaryotic cells
    6.7 Replication of organelle DNA
    6.8 Rotting circle replication
    6.9 Tetomere maintenance: the rote of tetomerase in DNA replication, aging, and cancer
    7 DNA repair and recombination, 152
    7.1 Introduction
    7.2 Types of mutations and their phenotypic consequences
    7.3 General classes of DNA damage
    7.4 Lesion bypass
    7.5 Direct reversat of DNA damage
    7.6 Repair of single base changes and structural distortions by removal of DNA damage
    7.7 Double-strand break repair by removal of DNA damage
    8 Recombinant DNA technotogy and motecutar ctoning, 180
    8.1 Introduction
    8.2 Historical perspective
    8.3 Cutting and joining DNA
    8.4 Molecular cloning
    8.5 Constructing DNA libraries
    8.6 Probes
    8.7 Library screening
    8.8 Expression libraries
    8.9 Restriction mapping
    8.10 Restriction fragment length potymorphism [RFLP}
    8.11 DNA sequencing
    9 Toots for anatyzing gene expression, 232
    9.1 Introduction
    9.2 Transient and stable transfection assays
    9.3 Reporter genes
    9.4 In vitro mutagenesis
    9.5 Analysis at the level of gene transcription: RNA expression and localization
    9.6 Analysis at the level of translation: protein expression and localization
    9.7 Antisense technology
    9.8 Analysis of DNA-protein interactions
    9.9 Analysis of protein-protein interactions
    9.10 Structural analysis of proteins
    9.11 Model organisms
    10 Transcription in prokaryotes, 278
    10.1 Introduction
    10.2 Transcription and translation are coupled in bacteria
    10.3 Mechanism of transcription
    10.4 Historical perspective, the Jacob-Monod operon model of gene regulation
    10.5 Lactose (lac) operon regulation
    10.6 Mode of action of transcriptional regulators
    10.7 Control of gene expression by RNA
    11 Transcription in eukaryotes, 312
    11.1 Introduction
    11.2 Overview of transcriptional regulation
    11.3 Protein-coding gene regulatory elements
    11.4 General [basatl transcription machinery
    11.5 Transcription factors
    11.6 Transcriptional coactivators and corepressors
    11.7 Transcription complex assembly, the enhanceosome mode versus the "hit and run" model
    11.8 Mechanism of RNA polymerase II transcription
    11.9 Nuclear import and export of proteins
    11.10 Regulated nuclear import and signal transduction pathways
    12 Epigenetics and monoattetic gene expression, 392
    12.1 Introduction
    12.2 Epigenetic markers
    12.3 Genomic imprinting
    12.4 X chromosome inactivation
    12.5 Phenotypic consequences of transposable elements
    12.6 Epigenetic control of transposable elements
    12.7 Allelic exclusion
    13 RNA processing and post-transcriptionat gene regutation,452
    13.1 Introduction
    13.2 RNA splicing: historical perspective and overview
    13.3 Group I and group II self-splicing introns
    13.4 Archaet and nuclear transfer RNA introns
    13.5 Cotranscriptional processing of nuclear pre-mRNA
    13.6 Alternative splicing
    13.7 Trans-splicing
    13.8 RNAediting
    13.9 Base modification guided by small nucteotar RNA molecules
    13.10 Post-transcriptionat gone regulation by microRNA
    13.11 RNA turnover in the nucleus and cytoplasm
    14 The mechanism of translation, 512
    14.1 Introduction
    14.2 Ribosome structure and assembly
    14.3 Aminoacyt-tRNA synthetases
    14.4 Initiation of translation
    14.5 Elongation
    14.6 Termination
    14.7 Translational and post-translational control
    15 Genetically modified organisms: use in basic and appUed research, 545
    15.1 Introduction
    15.2 Transgenic mice
    15.3 Gene-targeted mouse models
    15.4 Other applications of transgenic animal technology
    15.5 Cloning by nuclear transfer
    15.6 Transgenic plants
    16 Genome anatysis: DNA typing, genomics, and beyond, 581
    16.1 Introduction
    16.2 DNA typing
    16.3 Genomics and beyond
    16.4 The Human Genome Project
    16.5 Other sequenced genomes
    16.6 High-throughput analysis of gene function
    16.7 Single nucleotide polymorphisms
    17 Medical molecular biology, 618
    17.1 Introduction
    17.2 Molecular biology of cancer
    17.3 Gene therapy
    17.4 Genes and human behavior