首页 > 新书资源
新书资源(2012年2月)

Tumor-associated antigens : identification, characterization, and clinical applications / edited by Olivier Gires and Barbara Seliger. — Weinheim : Wiley-VCH, c2009. – (64.84/T925t)

Contents

    Contents
    
    List of Contributors XV
    Part One Tumor-associated Antigens (TAAs): Subclasses of TAAs 1
    1 T Cell Antigens in Cancer 3
    1.1 Introduction 3
    1.2 Generation of T-cell Epitopes 4
    1.2.1 Subclasses of Tumor-associated T-cell Antigens 5
    1.2.1.1 Unique Tumor Antigens 6
    1.2.1.2 Cancer Testis Antigens 6
    1.2.1.3 Differentiation Antigens 7
    1.2.1.4 Overexpressed Antigens 7
    1.3 Identification of T-cell Antigens and their Epitopes 8
    1.3.1 T-cell Antigens for Cancer Immunotherapy - How are Candidates Selected?
    1.4 Conclusions 12
     References 12
    2 Human Tumor Antigens as Targets of Immunosurveillance and Candidates for Cancer Vaccines 23
    2.1 Introduction 23
    2.2 Tumor Antigen Classes 24
    2.2.1 Oncofetal Antigens 24
    2.2.2 Oncogenes as Tumor Antigens 25
    2.2.3 Overexpressed Normal Molecules as Tumor Antigens 26
    2.2.4 Cancer-Testis (CT) Antigens 26
    2.2.5 Minor Histocompatibility Antigens (mHAgs) as Tumor Antigens 27
    2.2.6 Human Melanoma Antigens 28
    2.2.7 Human Glioma Antigens and Immunosurveillance in the CNS 29
    2.2.8 Heat Shock Proteins, Efficient Carriers of Tumor Antigens 30
    2.2.9 Dendritic Cells, Efficient Cross-presenters of Tumor Antigens 31
    2.2.10 Spontaneous and Vaccine-induced Immunity and the Tumor Microenvironment
    2.3 Summary 34
    References 34
    Part Two Methods to Detect TAAs 45
    3 Humoral Immune Responses against Cancer Antigens: Serological Identification Methods. Part I: SEREX 47
    3.1 Introduction 47
    3.2 The SEREX Approach 48
    3.2.1 Identification of Human Tumor Antigens by SEREX 49
    3.2.2 Specificity of Human Tumor Antigens 50
    3.2.2.1 Shared Tumor Antigens 50
    3.2.2.2 Differentiation Antigens 51
    3.2.2.3 Antigens Encoded by Mutated Genes 51
    3.2.2.4 Viral Genes 52
    3.2.2.5 Overexpressed Genes 52
    3.2.2.6 Amplified Genes 52
    3.2.2.7 Splice Variants of Known Genes 52
    3.2.2.8 Cancer-related Autoantigens 52
    3.2.2.9 Non-cancer-related Autoantigens 52
    3.2.2.10 Products of Underexpressed Genes 53
    3.2.3 Significance of Antibodies against SEREX Antigens 53
    3.2.4 Reverse T Cell Immunology 53
    3.2.5 Functional Significance of Human Tumor Antigens 54
    3.2.6 The Human Cancer Immunome 54
    3.2.7 Perspectives for Vaccine Development 56
    Conclusions 57
    References 58
    4 Humoral Immune Responses against Cancer Antigens: Serologica Identification Methods. Part I1: Proteomex and AMIDA 63
    4.1 Introduction 63
    4.1.1 A Humoral Response against Self-antigens: The Notion of Tumor-associated Antigens 64
    4.2 Implementation of Serum Antibodies: Serological Screening Technologies
    4.2.1 PROTEOMEX, alias SERPA and SPEARS 66
    4.2.1.1 PROTEOMEX Technology and its 'Pros' and 'Cons' 67
    4.2.1.2 Candidate Biomarkers Identified by PROTEOMEX 67
    4.2.1.3 Implementation of Candidate Biomarkers in the Clinic 68
    4.2.2 AMIDA 68
    4.2.2.1 Autologous AMIDA 69
    4.2.2.2 Allo-AMIDA 69
    4.2.3 Advantages and Disadvantages of AMIDA 71
    4.3 AMIDA Antigens and Clinical Application 71
    4.3.1 Diagnostic TAAs Detected with AMIDA Screening 71
    4.3.2 Therapeutic Markers 72
    4.4 Conclusions 72
     References 73
    5 cDNA and Microarray-based Technologies 79
    5.1 Introduction 79
    5.2 Technical Aspects 80
    5.2.1 Handling of Samples and the Need for Consistent Messenger RNA Amplification
    5.2.1.1 Collection of Source Material and RNA Isolation 82
    5.2.1.2 Single Strand cDNA Synthesis 83
    5.2.1.3 Double-stranded cDNA (ds-cDNA) Synthesis 84
    5.2.2 RNA Amplifications 85
    5.2.2.1 Linear Amplification 85
    5.2.2.2 PCR-based Exponential Amplification 86
    5.2.2.3 Target Labeling for cDNA Microarray using Amplified RNA 88
    5.2.2.4 Bioinformatics Tools 89
    5.2.2.5 Limitations of Transcriptional Profiling 90
    5.2.2.6 Usefulness of Transcriptional Profiling for Antigen Discovery and the Understanding of Tumor-Host Interactions 90
    5.3 Summary 93
     References 93
    6 Detection and Identification of TAA by SELDI-TOF 103
    6.1 Introduction 103
    6.2 SELDI (ProteinChip) Technology 104
    6.2.1 The Procedural Method 104
    6.2.2 SELDI-MS in TAA Identification 106
    6.2.2.1 Tumor Samples 106
    6.2.2.2 Body Fluids 106VIII Contents
    6.2.2.3 SELDI-MS TAAs and Clinical Potential
    6.3 Conclusions and Future Perspectives
    References 108
    Part Three TAAs and Their Usefulness 113
    7 Tumor-associated Antigens in Childhood Cancer 115
    7.1 Introduction to Childhood Cancer 115
    7.1.1 Incidence, Etiology and Types of Cancer in Children 115
    7.1.2 Cure Rates, Treatment Failure and Toxicity 115
    7.2 TAA for Pediatric Cancer Therapy 116
    7.2.1 Potential Clinical Impact of Childhood TAA and Strategies for their Identification 116
    7.2.2 TAA in Childhood Leukemia 117
    7.2.3 TAA in Childhood Brain Tumors 119
    7.2.4 TAA in Childhood Lymphoma 121
    7.2.5 TAA in Pediatric Neuroblastoma 122
    7.2.6 TAA in Rhabdomyosarcoma and other Soft Tissue Sarcomas 124
    7.2.7 TAA in Osteosarcoma 125
    7.2.8 TAA in Tumors of the Ewing Family 126
    7.2.9 TAA in Wilms' Tumor 127
    7.3 Conclusion 128
     References 129
    8 Epigenetically-regulated Therapeutic Tumor-associated Antigens 143
    8.1 Introduction 143
    8.2 Epigenetics 144
    8.2.1 DNA Methylation 144
    8.2.2 Histone Post-translational Modifications 145
    8.3 TAA 146
    8.3.1 Classification of TAA 146
    8.3.2 Epigenetically-regulated TAA 146
    8.3.2.1 HMW-MAA 146
    8.3.2.2 Mucins 147
    8.3.2.3 CTA 148
    8.4 Perspectives and Conclusion 153
     References 153
    9 Cancer Testis Antigens 161
    9.1 Introduction 161
    9.2 Definitions and Classification 162
    9.3 Tissue Distribution 163
    9.3.1 Normal tissues 163
    9.3.2 Tumors 163
    9.4 Function 164
    9.5 Immunology 166
    9.6 Clinical Trials 167
    9.7 Conclusions 172
     References 173
    10 Rationale for Treatment of Colorectal Cancer with EpCAM Targeting Therapeutics 179
    10.1 Introduction 179
    10.2 EpCAM Expression in Colorectal Cancer 181
    10.2.1 Frequent and High Level Expression of EpCAM in Primary Tumors of Colon Cancer 181
    10.2.2 EpCAM Expression on Colon Cancer Metastases 183
    10.2.3 EpCAM Expression on Circulating Colon Cancer Cells 184
    10.2.4 EpCAM Expression on Colon Cancer Stem Cells 184
    10.2.5 EpCAM Expression on Human Colon Cancer Cell Lines 185
    10.3 EpCAM-directed Therapeutic Approaches 185
    10.3.1 Clinical Results with Anti-EpCAM Murine Antibody Edrecolomab in Stage II and III CRC 185
    10.3.2 Clinical Results with Edrecolomab as a Vaccine for Induction of Anti-idiotypic Response 188
    10.3.3 EpCAM Protein as a Vaccine in Colorectal Cancer 189
    10.3.4 Adecatumumab, a Novel Fully Human Anti-EpCAM Antibody 190
    10.4 Therapeutic Window of EpCAM-directed Therapies 192
    10.5 Conclusions 196
    References 198
    11 Carcinoembryonic Antigen 201
    11.1 CEA Biology 201
    11.1.1 C EA Gene Family, Genomic Localization, Protein Structure 201
    11.1.2 Evolution 203
    11.1.3 Expression 203
    11.1.4 Biological Functions 204
    11.2 Clinical Relevance of CEA 206
    11.2.1 CEA as a Tumor Marker for Prognosis and Post-surgery Follow-up 206
    11.2.2 Targeting CEA for Tumor Localization and Therapy 207
    11.2.2.1 Animal Models for CEA 207
    11.2.2.2 Tumor Localization and Therapy with Anti-CEA Antibodies 207
    11.2.2.3 CEA-based Vaccines 209
    11.2.3 Immune Monitoring 211
    11.3 Conclusion 213
    References 213
    12 HER-2 as a Tumor Antigen 219
    12.1 Introduction 219
    12.2 Biology of HER2 219
    12.2.1 Features of HER2 219
    12.2.2 The Self-antigen HER2 as a Potential Therapeutic Target 220
    12.2.3 Determination of HER2 Status in Tumors 222
    12.3 General Approaches for Targeting HER2 using Anti-cancer Agents 222
    12.4 Active HER2-based Cancer Vaccines 222
    12.4.1 HER2-specific Peptides 223
    12.4.2 T Cell-mediated Immunity to HER2 in Cancer Patients 224
    12.5 Passive Immunotherapy Targeting HER2 224
    12.6 HER2 Effects on ImmunogenicitF. Both Sides of the Coin 225
    12.7 Conclusions 226
     References 227
    13 Epstein-Barr Virus-associated Antigens 231
    13.1 Introduction 231
    13.2 Functions of EBV Antigens in Latently Infected Cells 232
    13.2.1 EBV Nuclear Antigen 1 (EBNA1) 233
    13.2.2 EBV Nuclear Antigen 2 and Leader Protein (EBNA2 and EBNA-LP) 233
    13.2.3 EBV Nuclear Antigen Family 3 (EBNA3) 234
    13.2.4 Latent Membrane Protein 1 (LMP1) 234
    13.2.5 Latent Membrane Protein 2 (LMP2) 235
    13.3 T-cell Responses to EBV Antigens 236
    13.3.1 CD8+ T-cell Responses 236
    13.3.2 CD4+ T-cell Response 237
    13.4 EBV-associated Malignancies 237
    13.4.1 Post-Transplant Lymphoproliferative Disease (PTLD) 237
    13.4.2 Adoptive T-cell Therapy 238
    13.4.3 Burkitt's Lymphoma and Hodgkin's Lymphoma 240
     References 241
    14 Human Papillomavirus (HPV) Tumor-associated Antigens 249
    14.1 Introduction 249
    14.2 HPV-encoded TAA 250
    14.2.1 The Proteins of HPV 250
    14.2.2 Vaccine Development 253
    14.2.3 Therapeutic Vaccine Strategies 253
    14.2.4 HPV-induced Cellular TAA 256
    14.3 Conclusions and Future Perspectives 256
     References 257
    15 Circulating TAAs: Biomarkers for Cancer Diagnosis, CA125 261
    15.1 Introduction 261
    15.2 Definition and Classification of Mucins 261
    15.3 Structure of MUC 16 263
    15.3.1 Gene and Protein Structure 263
    15.3.1.1 Domain I 263
    15.3.1.2 Domain II 263
    15.3.1.3 Domain III 265
    15.3.2 Evolutionary Considerations 266
    15.4 Distribution of MUC16 266
    15.5 MUC16 Function in Normal Tissues 266
    15.6 Release ofMUC16:CA125 Tumor Marker 267
    15.6.1 History 267
    15.6.2 Assay Methods 268
    15.6.3 Serum CA125 Levels in Healthy Subjects 269
    15.6.3.1 Age 269
    15.6.3.2 Menstrual cycle 270
    15.6.3.3 Pregnancy 270
    15.6.3.4 Race 270
    15.6.3.5 Other Factors that may affect CA125 Levels 270
    15.6.4 Serum CA125 Levels in Patients with Benign Diseases 270
    15.6.5 Serum CA125 Levels in Non-ovarian Cancer 270
    15.6.6 Serum CA125 Levels in Ovarian Cancers 270
    15.7 Clinical Applications 271
    15.7.1 Screening 271
    15.7.2 Evaluating Pelvic Masses 272
    15.7.3 Assessing Prognosis 272
    15.7.4 Assessing Response to Therapy 273
    15.7.5 Follow-up after Completion of Initial Therapy 274
    15.8 Novel Markers 274
    15.9 Conclusions 276
    References 276
    Part Four Clinical Applications of TAAs 281
    16 Overview of Cancer Vaccines 283
    16.1 Introduction 283
    16.2 Cellular Immune Responses in Tumor Rejection 283
    16.3 Selection of TAAs for the Development of Cancer Vaccines 284
    16.4 Types of Cancer Vaccine 285
    16.4.1 Defined Antigen Approaches 285
    16.4.1.1 Peptides 285
    16.4.1.2 Recombinant Protein 286
    16.4.1.3 DNA 287
    16.4.1.4 Viral Vectors 288
    16.4.2 Undefined Antigens 289
    16.4.2.1 Autologous Tumor Cell Vaccines 289
    16.4.2.2 Allogeneic Tumor Cell Vaccines 290
    16.4.2.3 Loading DCs with Tumor Preparations 290
    16.5 Immune Biomarkers 292
    16.6 Problems with the Assessment of Clinical Trials for Cancer Vaccines 292
    16.6.1 Biomarkers 294
    16.6.2 Schedule and Protocol 294
    16.7 Combined Therapies; Synergy with Conventional Approaches 294
    16.8 Conclusion 295
     References 296
    17 Tumor-associated Antigenic Peptides as Vaccine Candidates 303
    17.1 Introduction 303
    17.2 Different Types of Antigens 304
    17.2.1 Mutation Antigens 304
    17.2.2 Shared Tumor-specific Antigens 306
    17.2.3 Differentiation Antigens 308
    17.2.4 Over-Expressed Antigens 309
    17.2.5 Viral Antigens 311
    17.3 Conclusions 312
     References 313
    18 DNA Vaccines for the Human Papilloma Virus 317
    18.1 Introduction 317
    18.1.1 HPV and Cervical Cancer 317
    18.1.2 Events in the Progression from HPV Infection to Cervical Cancer 318
    18.1.3 HPV Antigens for Vaccine Development 318
    18.2 DNAVaccines for HPV 319
    18.2.1 Preventive HPV DNA Vaccines 319
    18.2.2 Therapeutic HPV DNA Vaccines 321
    18.2.2.1 Importance of DCs in Enhancing DNA Vaccine Potency 322
    18.2.2.2 Clinical Progress in HPV DNA Vaccine Development 329
    18.2.3 Combined Approaches 331
    18.2.3.1 Combined Preventive and Therapeutic HPV DNA Vaccines 331
    18.2.3.2 HPV DNA Vaccines in Combination with Other Therapies 331
    18.3 Conclusion 332
     References 332
    19 Adoptive T-cell Transfer in Cancer Treatment 339
    19.1 Introduction 339
    19.2 T Cell-based Therapies 339
    19.2.1 Therapy of Virus-associated Cancers with Antigen-specific T Cells 339
    19.2.2 T Cells with Specificity for Self-antigens 342
    19.2.3 T Cells with Specificity for Alloantigens 343
    19.2.4 Engineered T Cells 344
    19.2.5 Safety Concerns and Suicide Gene Transfer 345
    19.3 Conclusion 346
    References 346
    Index 355