首页 > 新书资源
新书资源(2011年7月)

Structure and function of calcium release channels / edited by Irina I. Serysheva. — Amsterdam : Elsevier Academic Press, c2010. – (58.1551/C976/v.66)

Contents

    Contents
    
    Contributors xi
    Preface xv
    Previous Volumes in Series xvii
    SECTION 1 RYR Ca2+ RELEASE CHANNELS
    CHAPTER 1 RyRs: Their Disposition, Frequency, and Relationships with Other Proteins of Calcium Release Units
    I. Overview 3
    II. Introduction 4
    III. Cardiac CRUs 4
    IV. CRUs in Skeletal and Invertebrate Body Muscles 8
    V. Factors Affecting CRU Assembly in Skeletal and Cardiac Muscles 12
    VI. Isoform-Specific Features of RyR Distribution 16
    VII. Architecture of SR and T Tubule Membranes is Muscle- and Fiber-Type Specific References 22
    CHAPTER 2 Electron Microscopy of Ryanodine Receptors
    I. Overview 27
    II. Introduction 28
    III. Cryo-EM of Macromolecular Complexes 28
    IV. Three-Dimensional Architecture of RyR as Determined by Cryo-EM 29
    V. s-Helices in the TM Region and the Mechanism of Calcium Channel Gating 32
    VI. Synergism of 3D Cryo-EM and Other Biophysical/Biochemical Techniques 34
    VII. Outlook and Perspectives 40
    References 42
    CHAPTER 3 The Ryanodine Receptor Pore: is There a Consensus View?
    I. Overview 49
    II. Introduction 50
    III. Ion Handling in RyR 51
    IV. Where is the PFR in the RyR Channel? 53
    V. Attempts to Identify the Structure of the RyR PFR 58
    VI. Theoretical Approaches to Understanding the Mechanisms Underlying Ion Translocation and Discrimination in RyR 61
    VII. Testing Physical and Theoretical Models of the RyR PFR by Residue Substitution
    VIII. Concluding Remarks 64
    References 64
    CHAPTER 4 Regulation of RyR Channel Gating by Ca2+, Mg2+ and ATP
    I. Overview 69
    II. Introduction 70
    III. RyR2 in Cardiac Contraction and Pacemaking 70
    IV. Four Ca2+ Sensing Mechanisms for RyR2 71
    V. Synergistic Ca2+-Activation via Cytoplasmic and Luminal Facing Binding Sites 74
    VI. Channel Open Times and the Role of Ca2+ Feed-Through 76
    VII. Three Mechanisms for Mg2+-Inhibition of RyR2 77
    VIII. A Model for Ca2+ and Mg2+ Regulation of RyR2 80
    IX. Adenine Neucleotides 82
    X. Regulation of RyR2 in Cardiac E-C Coupling 84
    XI. Concluding Remarks 86
    References 87
    CHAPTER 5 Regulation of Ryanodine Receptor Ion Channels Through Posttranslational Modifications
    I. Overview 91
    II. Introduction 92
    III. RyR1 and RyR2 Phosphorylation 93
    IV. RyR Modulation by Reactive Oxygen and Nitrogen Species 99
    V. Conclusions 104
    References 105
    CHAPTER 6 Crosstalk via the Sarcoplasmic Gap: The DHPR-RyR Interaction
    I. Overview 115
    II. DHPR and RyR Arrangement in Skeletal and Cardiac Muscle Membranes--Basis for Differences in the EC Coupling Mechanism 116
    III. Structural Domains Involved in skDHPR-RyR1 Interaction 119
    IV. The Role of Intracellular Molecular Regions Besides the Cqs II-III Loop in skDHPR-RyR1 Interaction 126
    V. Intracellular Molecular Regions of Cqs Involved in Tetrad Formation 128
    VI. The Role of the Accessory skDHPR Subunits in Interaction with RyR1 128
    VII. Conclusion 131
    References 133
    CHAPTER 7 Ryanodinopathies: RyR-Linked Muscle Diseases
    I. Overview 139
    II. Introduction 140
    III. RyR1-Linked Diseases 142
    IV. RyR2-Linked Diseases 153
    V. Conclusions and Perspectives 158
    References 160
    SECTION 2 IP3R Ca2+ RELEASE CHANNELS
    CHAPTER 8 3D Structure of IP3 Receptor
    I. Overview 171
    II. Introduction 172
    III. Predicted Topology of IP3R Molecule 173
    IV. Arrangement of IP3R in the Native Membrane 175
    V. 3D Structure of IP3R by Electron Microscopy 176
    VI. Crystal Structures of Isolated Domains 182
    VII. Conformational Transitions in IP3R Channel 183
    VIII. Future Outlook 185
    References 186
    CHAPTER 9 Molecular Architecture of the Inositol 1,4,5-Trisphosphate Receptor Pore
    I. Overview 191
    II. Introduction 192
    III. The Transmembrane Domains 194
    IV. The Ion Conduction Pore: Electrophysiologic Studies 197
    V. The Ion Conduction Pore: Modeling Studies 202
    References 204
    CHAPTER 10 Adenophostins: High-Affinity Agonists of IP3 Receptors
    I. Overview 209
    II. Discovery and Initial Characterization of Adenophostins 210
    III. Structure and Synthesis of Adenophostin 212
    IV. Activation of IP3R by Adenophostin 216
    V. Why does Adenophostin Bind to IP3R With High-Affinity? 220
    VI. Is Adenophostin more than a Stable, High-Affinity Agonist of IP3R? 225
    References 228
    CHAPTER 11 Regulation of IP3R Channel Gating by Ca2+ and Ca2+ Binding Proteins
    I. Overview 235
    II. Introduction 236
    III. Cytoplasmic Ca2+ Regulation of IP3R Channel Gating 237
    IV. Ca2+ Binding Protein Regulation of IP3R Channel Gating 263
    References 267
    CHAPTER 12 Regulation of Inositol 1,4,5-Trisphosphate Receptors by Phosphorylation and Adenine Nucleotides
    I. Overview 273
    II. Regulation of IP3R by Phosphorylation 274
    III. Regulation of IP3R by Adenine Nucleotides 283
    References 292
    CHAPTER 13 Role of Thiols in the Structure and Function of Inositol Trisphosphate Receptors
    I. Overview 299
    II. Introduction 300
    III. Regulation of IP3R Function by Changes in Thiol Redox State 300
    IV. Comparison of Thiol Regulation of IP3Rs and RyRs 308
    V. Cysteine Residues as Probes of IP3R Structure 310
    VI. Future Directions 314
    References 315
    CHAPTER 14 Inositol 1,4,5-Tripshosphate Receptor, Calcium Signaling, and Polyglutamine Expansion Disorders
    I. Overview 323
    II. Huntington's Disease, Spinocerebellar Ataxia Type 2, and Spinocerebellar Ataxia Type 3 324
    III. Mutant Huntingtin Specifically Sensitizes IP3R1 to IP3 325
    IV. Mutant Huntingtin Activates NR2B-Containing NMDA Receptors 326
    V. Deranged Ca2+ Signaling and Apoptosis of HD MSN 329
    VI. IP3R and Abnormal Ca2+ Signaling in SCA2 Neurons 330
    VII. IP3R and Abnormal Ca2+ Signaling in SCA3 Neurons 332
    VIII. Ca2+ Blockers and Perspectives for Clinical Intervention in HD and SCA Patients
    References 335