首页 > 新书资源
新书资源(2011年5月)

The chemical biology of DNA damage / edited by Nicholas E. Geacintov, Suse Broyde. — Weinheim : Wiley-VCH, 2010. – (58.174252/C517)

Contents

    Contents
    
    Preface XV
    List of Contributors XVII
    Part One Chemistry and Biology of DNA Lesions 1
    1 Introduction and Perspectives on the Chemistry and Biology of DNA Damage 3
    1.1 Overview of the Field , 3
    1.2 DNA Damage-A Constant Threat 4
    1.3 DNA Damage and Disease 5
    1.4 DNA Damage and Chemotherapeutic Applications 8
    1.5 The Cellular DNA Damage Response (DDR) 9
    1.6 Repair Mechanisms that Remove DNA Lesions 10
    1.7 Relationships between the Chemical, Structural, and Biological Features of DNA Lesions 12
    Acknowledgements 15
    References 15
    2 Chemistry of Inflammation and DNA Damage: Biological Impact of Reactive Nitrogen Species 21
    2.1 Introduction 21
    2.2 DNA Oxidation and Nitration 23
    2.3 DNA Deamination 26
    2.4 2'-Deoxyribose Oxidation 30
    2.5 Indirect Base Damage Caused by RNS 35
    2.6 Conclusions 38
    Acknowledgements 38
    References 38
    3 Oxidatively Generated Damage to Isolated and Cellular DNA 53
    3.1 Introduction 53
    3.2 Single Base Damage 55
    3.3 Tandem Base Lesions 66
    3.4 Hydroxyl Radical-Mediated 2-Deoxyribose Oxidation Reactions 67
    3.5 Secondary Oxidation Reactions of Bases 70
    3.6 Conclusions and Perspectives 71
    Acknowledgements 71
    References 72
    4 Role of Free Radical Reactions in the Formation of DNA Damage 81
    4.1 Introduction 81
    4.2 Importance of Free Radical Reactions with DNA 82
    4.3 Mechanisms of Product Formation 91
    4.4 Biological Implications 99
    Acknowledgements 100
    References 101
    5 DNA Damage Caused by Endogenously Generated Products of Oxidative Stress 105
    5.1 Lipid Peroxidation 105
    5.2 2'-Deoxyribose Peroxidation 107
    5.3 Reactions of MDA and [3-Substituted Acroleins with DNA Bases 109
    5.4 Stability of MldG: Hydrolytic Ring-Opening and Reaction with Nucleophiles 112
    5.5 Propano Adducts 114
    5.6 Etheno Adducts 114
    5.7 Mutagenicity of Peroxidation-Derived Adducts 117
    5.8 Repair of DNA Damage 121
    5.9 Assessment of DNA Damage 123
    5.10 Conclusions 126
    Acknowledgements 126
    References 126
    6 Polycyclic Aromatic Hydrocarbons: Multiple Metabolic Pathways and the DNA Lesions Formed 131
    6.1 Introduction 131
    6.2 Radical Cation Pathway 134
    6.3 Diol Epoxides 137
    6.4 PAH o-Quinones 141
    6.5 Future Directions 147
    Acknowledgements 148
    References 148
    7 Aromatic Amines and Heterocyclic Aromatic Amines: From Tobacco Smoke to Food Mutagens 157
    7.1 Introduction 157
    7.2 Exposure and Cancer Epidemiology 157
    7.3 Enzymes of Metabolic Activation and Genetic Polymorphisms 159
    7.4 Reactivity of N-Hydroxy-AAs and N-Hydroxy-HAAs with DNA 161
    7.5 Syntheses of AA-DNA and HAA-DNA Adducts 162
    7.6 Biological Effects of AA-DNA and HAA-DNA Adducts 162
    7.7 Bacterial Mutagenesis 164
    7.8 Mammalian Mutagenesis 165
    7.9 Mutagenesis in Transgenic Rodents 166
    7.10 Genetic Alterations in Oncogenes and Tumor Suppressor Genes 167
    7.11 AA-DNA and HAA-DNA Adduct Formation in Experimental Animals and Methods of Detection 168
    7.12 AA-DNA and HAA-DNA Adduct Formation in Humans 171
    7.13 Future Directions 173
    Acknowledgements 173
    References 173
    8 Genotoxic Estrogen Pathway: Endogenous and Equine Estrogen Hormone Replacement Therapy 185
    8.1 Risks of Estrogen Exposure 185
    8.2 Mechanisms of Estrogen Carcinogenesis
    8.3 Estrogen Receptor as a Trojan Horse (Combined Hormonal/Chemical Mechanism) 193
    8.4 Conclusions and Future Directions 194
    Acknowledgements 194
    References 194
    Part Two New Frontiers and Challenges: Understanding Structure-Function Relationships and Biological Activity 201
    9 Interstrand DNA Cross-Linking 1,N2-Deoxyguanosine Adducts Derived from α,β-Unsaturated Aldehydes: Structure-Function Relationships 203
    9.1 Introduction 203
    9.2 Interstrand Cross-Linking Chemistry of the y-OH-PdG Adduct (9) 205
    9.3 Interstrand Cross-Linking by the c~-CH3-7-OH-PdG Adducts Derived from Crotonaldehyde 207
    9.4 Interstrand Cross-Linking by 4-HNE 207
    9.5 Carbinolamine Cross-Links Maintain Watson-Crick Base-Pairing 209
    9.6 Role of DNA Sequence 210
    9.7 Role of Stereochemistry in Modulating Cross-Linking 210
    9.8 Biological Significance 212
    9.9 Conclusions 213
    Acknowledgements 213
    References 213
    10 Structure-Function Characteristics of Aromatic Amine-DNA Adducts 217
    10.1 Introduction 217
    10.2 Major Conformational Motifs 219
    10.3 Conformational Heterogeneity 221
    10.4 Structures of DNA Lesion-DNA Polymerase Complexes 231
    10.5 Conclusions 232
    Acknowledgements 233
    References 233
    11 Mechanisms of Base Excision Repair and Nucleotide Excision Repair 239
    11.1 General Features of Base Excision and Nucleotide Excision Repair 239
    11.2 BER 241
    11.3 NER 248
    11.4 Conclusions 254
    References 254
    12 Recognition and Removal of Bulky DNA Lesions by the Nucleotide Excision Repair System 261
    12.1 Introduction 261
    12.2 Overview of Mammalian NER 261
    12.3 Prokaryotic NER 263
    12.4 Recognition of Bulky Lesions by Mammalian NER Factors 263
    12.5 Bipartite Model of Mammalian NER and the Multipartite Model of Lesion Recognition 264
    12.6 DNA Lesions Derived from the Reactions of PAH Diol Epoxides with DNA are Excellent Substrates for Probing the Mechanisms of NER 265
    12.7 Multidisciplinary Approach Towards Investigating Structure-Function Relationships in the NER of Bulky PAH-DNA Adducts 268
    12.8 Dependence of DNA Adduct Conformations and NER on PAH Topology and Stereochemistry 269
    12.9 Dependence of NER of the 10S (+)-trans-anti-B[a]P-N2-dG Adduct on Base Sequence Context 280
    12.10 Conclusions 287
    Acknowledgements 289
    References 289
    13 Impact of Chemical Adducts on Translesion Synthesis in Replicative and Bypass DNA Polymerases: From Structure to Function 299
    13.1 Introduction 299
    13.2 Bypass of Abasic Sites 302
    13.3 Lesions Generated by Oxidative Damage to DNA 305
    13.4 Exocyclic DNA Adduct Bypass 308
    13.5 Alkylated DNA 310
    13.6 Polycyclic Aromatic Hydrocarbons and the Effect of Adduct Size upon Polymerase Catalysis 313
    13.7 Cyclobutane Pyrimidine Dimers and UV Photoproducts 316
    13.8 Inter- and Intrastrand DNA Cross-Links 316
    13.9 Conclusions 318
    References 319
    14 Elucidating Structure-Function Relationships in Bulky DNA Lesions: From Solution Structures to Polymerases 331
    14.1 Introduction 331
    14.2 Benzo[a]pyrene-Derived DNA Lesions as a Useful Model 331
    14.3 Computational Elucidation of the Structural Properties of B[a]P-Derived DNA Lesions in Solution 333
    14.4 DNA Polymerase Structure-Function Relationships Elucidated with B[a]P-Derived Lesions 335
    14.5 Mechanism of the Nucleotidyl Transfer Reaction 343
    14.6 Conclusions and Future Perspectives 345
    Acknowledgements 345
    References 346
    15 Translesion Synthesis and Mutagenic Pathways in Escherichia coli Cells 353
    15.1 Introduction 353
    15.2 Mutagenesis in E. coli has Illuminated Our Understanding of Mutagenesis in General 354
    15.3 Why Does E. coli have Three Translesion Synthesis DNA Polymerases? 356
    15.4 Overview of the Steps Leading to Translesion Synthesis 358
    15.5 Case Studies: AAF-C8-dG and N2-dG Adducts, Such as +BP 360
    15.6 Structure-Function Analysis of Y-Family Pols IV and V of E. coli 362
    15.7 Y-Family DNA Polymerase Mechanistic Steps 373
    15.8 Structure of B-Family Pol II of E. coli 373
    References 374
    16 Insight into the Molecular Mechanism of Translesion DNA Synthesis in Human Cells using Probes with Chemically Defined DNA Lesions 381
    16.1 Introduction 381
    16.2 Overview of TLS 382
    16.3 Plasmid Model Systems with Defined Lesions for Studying TLS 384
    16.4 Gap-Lesion Plasmid Assay for Mammalian TLS 384
    16.5 Some Lesions are Bypassed Most Effectively and Most Accurately by Specific Cognate TLS DNA Polymerases 387
    16.6 Pivotal Role for Pol ζ in TLS Across a Wide Variety of DNA Lesions 388
    16.7 Knocking-Down the Expression of TLS Polymerases using Small Interfering RNA Provides a useful Tool for the Analysis of TLS using the Gapped Plasmid Assay 388
    16.8 Evidence that TLS Occurs by Two-Polymerase Mechanisms, in Combinations that Determine the Accuracy of the Process 391
    16.9 Conclusions 393
    Acknowledgements 393
    References 394
    17 DNA Damage and Transcription Elongation: Consequences and RNA Integrity 399
    17.1 Introduction 399
    17.2 DNA Repair 400
    17.3 Transcription Elongation and DNA Damage 402
    17.4 RNA Polymerases: A Brief Overview 402
    17.5 RNA Polymerase Elongation Past DNA Damage 407
    17.6 Conclusions 421
    Acknowledgements 428
    References 429
    Index 439