首页 > 新书资源
新书资源(2010年5月)

Biophysical, chemical, and functional probes of RNA structure, interactions and folding. part A / edited by Daniel Herschlag. — Amsterdam : Elsevier, 2009. – (58.17435/C719/c.468)

Contents

    CONTENTS
    
    Contributors
    Preface
    Volumes in Series
    Section I. Chemical and Functional Probing of RNA structure, Interactions, and Folding
    1. Nucleotide Analog Interference Mapping
     1. Introduction
     2. Materials and Reagents
     3. Methods
     4. Properties of Analogs
     5. Nucleotide Analog Interference Suppression
     6. Conclusions
     References
    2. Hydroxyl-Radical Footprinting to Probe Equilibrium Changes in RNA Tertiary Structure
     1. Introduction
     2. Sample Preparation
     3. Equilibrium -OH Footprinting Based on Peroxidative Fenton Chemistry
     4. Equilibrium -OH Footprinting Based on Oxidative Fenton Chemistry
     5. Cleavage Product Separation
     6. Quantitation of the Changes in the Reactivity and Data Analysis
     7. Conclusions
     Acknowledgments
     References
    3. Rapid Quantification and Analysis of Kinetic -OH Radical Footprinting Data Using SAFA
     1. Introduction
     2. Using SAFA
     3. Data Normalization
     4. Data Visualization
     5. Conclusion
     Acknowledgment
     References
    4. High-Throughput SHAPE and Hydroxyl Radical Analysis of RNA Structure and Ribonucleoprotein Assembly
     1. Introduction
     2. Theory
     3. Practice
     4. Examples and Interpretation
     5. Perspectives and Conclusion
     Acknowledgments
     References
    5. Metal Ion-Based RNA Cleavage as a Structural Probe
     1. Introduction
     2. Mechanisms of Metal Ion-Based Cleavage of Nucleic Acids
     3. Metal Ion-Based Cleavage of RNA as a Structural Probe
     4. Protocols
     Acknowledgment
     References
    6. 2'-Amino-Modified Ribonucleotides as Probes for Local Interactions Within RNA
     1. Introduction
     2. 2’-Amino-2'-Deoxynucleotide Synthesis and Incorporation
     3. 2’-Amino-2’-Deoxynucleotides as Sites for Covalent Modification
     4. General Strategy for Investigating 2'-Hydroxyl Interactions Using 2’-Deoxy and 2’-Aminonucleotides
     5. Studies of RNA Catalysis Using 2'-Amino-2’-Deoxynucleotides
     6. Using 2’-Aminonucleotides to Investigate RNA Structure and Function: Case Studies
     7. Conclusions
     Acknowledgments
     References
    7. RNA Crosslinking Methods
     1. Introduction
     2. Synthesis of Modified RNA Crosslinking Substrates
     3. Generation of Crosslinked RNAs
     4. Mapping of Crosslinked Nucleotides
     5. Assessing the Validity of Crosslinking Data
     References
    8. Chemical Probing of RNA and RNA/Protein Complexes
     1. Introduction
     2. Materials
     3. Handling of the Chemicals
     4. Optimization of the Chemical Probing Reactions
     5. Procedure of Chemical Probing
     6. RNA Extraction
     7. Normalization of the RNA Sample
     8. Primer Extension Analysis
     9. Data Evaluation
     10. Summary
     Acknowledgments
     References
    9. RNA Folding During Transcription: Protocols and Studies
     1. Introduction
     2. Protocol 1: Determination of Transcriptional Pause Sites
     3. Protocol 2: Structural Mapping of Paused Complexes
     4. Protocol 3: Cotranscriptional RNA Folding as Measured via Oligohybridization
     5. Protocol 4: Cotranscriptional RNA Folding Measured via P RNA Catalytic Activity
     6. Protocol 5: The Folding of Self-Cleaving RNAs During Transcription
     7. Additional Methodologies
     8. Cotranscriptional Folding Studies from our Laboratory
     References
    10. Catalytic Activity as a Probe of Native RNA Folding
     1. Introduction
     2. Preliminary Measurements of Catalytic Reaction
     3. Following RNA Folding by Continuous Activity Assay
     4. Following RNA Folding by Discontinuous Activity Assay
     5. Other Applications of Catalytic Activity as a Probe of Folding
     Acknowledgments
     References
    11. Probing RNA Structure Within Living Cells
     1. Introduction
     2. Experimental Procedure
     3. Application
     4. Limitations
     5. Conclusion
     Acknowledgments
     References
    12. Structural Analysis of RNA in Living Cells by In Vivo Synchrotron X-Ray Footprinting
     1. Introduction
     2. Beamline Setup for In Vivo Footprinting
     3. Preparation of Samples
     4. Exposure of Cells to X-Ray Beam
     5. Isolation of Total RNA from Irradiated Cells
     6. Primer Extension
     7. Analysis of X-Ray Footprinting Experiments
     8. Results on E. coil RNAs
     9. Future of Footprinting
     Acknowledgments
     References
    13. Determination of Intracellular RNA Folding Rates Using Self-Cleaving RNAs
     1. Introduction
     2. Using RNA Turnover Rates as a "Clock" for Measuring RNA Assembly Kinetics
     3. Applications
     Acknowledgments
     References
    Section II. Identifying Metal Ion Interactions in RNA
    14. Separation of RNA Phosphorothioate Oligonucleotides by HPLC
     1. Introduction: Phosphorothioate Oligonucleotides and the Need for Separation
     2. HPLC Separation of Phosphorothioate Diastereomers
     3. Materials and Methods
     4. Examples of Phosphorothioate Oligonucleotide Separations
    Acknowledgments
     References
    15. Use of Phosphorothioates to Identify Sites of Metal-Ion Binding in RNA
     1. Introduction
     2. Use of Phosphorothioate-Containing Ribozymes to Identify Sites of Metal-Ion Binding
     3. Protocols
     Acknowledgments
     References
    16. EPR Methods to Study Specific Metal-Ion Binding Sites in RNA
     1. Introduction
     2. Room Temperature EPR Spectroscopy to Quantify Mn2+ Bound to RNA
     3. Low-Temperature EPR Spectroscopy of Mn2+ Ions Bound to RNA
     4. ENDOR Spectroscopy to Identify Metal Ligands
     5. ESEEM Spectroscopy
     6. Summary
     Acknowledgments
     References
    Section III. RNA Thermodynamics
    17. Optical Melting Measurements of Nucleic Acid Thermodynamics
     1. Introduction
     2. Instrumentation
     3. Calibrations
     4. Brief Theory of Optical Melting Experiments
     5. Two-State Assumption
     6. ΔC Assumption
     7. Experimental Design
     8. Data Interpretation
     9. Error Analysis
     10. Summary
     Acknowledgments
     References
    18. Analyzing RNA and DNA Folding Using Temperature Gradient Gel Electrophoresis (TGGE) with Application to In Vitro Selections
     1. Introduction
     2. Temperature Gradient Gel Electrophoresis
     3. Experimental Design and Application of TGGE to RNA and DNA
     Acknowledgment
     References
    19. Studying RNA-RNA and RNA-Protein Interactions by Isothermal Titration Calorimetry
     1. Introduction
     2. Required Materials
     3. Instrumentation
     4. Sample Considerations and Preparation
     5. Cleaning the Sample Cell and Titration Syringe
     6. Collecting Titration Data
     7. Data Processing and Analysis
     8. Special Considerations
     9. Conclusions
     References
    Author Index
    Subject Index