首页 > 新书资源
新书资源(2007年12月)

Principles of physical biochemistry / Kensal E. van Holde, W. Curtis Johnson, P. Shing Ho. — 2nd ed. — Upper Saddle River, N.J. : Pearson/Prentice Hall, c2006.—(58.173/V217/2nd ed.)

Contents

    Contents
    
    Preface
    Chapter 1 Biological Macromolecules
    1.1 General Principles
    1.2 Molecular Interactions in Macromolecular Structures
    1.3 The Environment in the Cell
    1.4 Symmetry Relationships of Molecules
    1.5 The Structure of Proteins
    1.6 The Structure of Nucleic Acids
    Chapter 2 Thermodynamics and Biochemistry
    2.1 Heat, Work, and Energy--First Law of Thermodynamics
    2.2 Molecular Interpretation of Thermodynamic Quantities
    2.3 Entropy, Free Energy, and Equilibrium--Second Law of Thermodynamics
    2.4 The Standard State
    2.5 Experimental Thermochemistry
    Chapter 3 Molecular Thermodynamics
    3.1 Complexities in Modeling Macromolecular Structure
    3.2 Molecular Mechanics
    3.3 Stabilizing Interactions in Macromolecules
    3.4 Simulating Macromolecular Structure
    Chapter 4 Statistical Thermodynamics
    4.1 General Principles
    4.2 Structural Transitions in Polypeptides and Proteins
    4.3 Structural Transitions in Polynucleic Acids and DNA
    4.4 Nonregular Structures
    Chapter 5 Methods for the Separation and Characterization of Macromolecules
    5.1 General Principles
    5.2 Diffusion
    5.3 Sedimentation
    5.4 Electrophoresis and Isoelectric Focusing
    Chapter 6 X-Ray Diffraction
    6.1 Structures at Atomic Resolution
    6.2 Crystals
    6.3 Theory of X-Ray Diffraction
    6.4 Determining the Crystal Morphology
    6.5 Solving Macromolecular Structures by X-Ray Diffraction
    6.6 Fiber Diffraction
    Chapter 7 Scattering from Solutions of Macromolecules
    7.1 Light Scattering
    7.2 Dynamic Light Scattering: Measurements of Diffusion
    7.3 Small-Angle X-Ray Scattering
    7.4 Small-Angle Neutron Scattering
    7.5 Summary
    Chapter 8 Quantum Mechanics and Spectroscopy
    8.1 Light and Transitions
    8.2 Postulate Approach to Quantum Mechanics
    8.3 Transition Energies
    8.4 Transition Intensities
    8.5 Transition Dipole Directions
    Chapter 9 Absorption Spectroscopy
    9.1 Electronic Absorption
    9.2 Vibrational Absorption
    9.3 Raman Scattering
    Chapter 10 Linear and Circular Dichroism
    10.1 Linear Dichroism of Biological Polymers
    10.2 Circular Dichroism of Biological Molecules
    Chapter 11 Emission Spectroscopy
    11.1 The Phenomenon
    11.2 Emission Lifetime
    11.3 Fluorescence Spectroscopy
    11.4 Fluorescence Instrumentation
    11.5 Analytical Applications
    11.6 Solvent Effects
    11.7 Fluorescence Decay
    11.8 Fluorescence Resonance Energy Transfer
    11.9 Linear Polarization of Fluorescence
    11.10 Fluorescence Applied to Protein
    11.11 Fluorescence Applied to Nucleic Acids
    Chapter 12 Nuclear Magnetic Resonance Spectroscopy
    12.1 The Phenomenon
    12.2 The Measurable
    12.3 Spin-Spin Interaction
    12.4 Relaxation and the Nuclear Overhauser Effect
    12.5 Measuring the Spectrum
    12.6 One-Dimensional NMR of Macromolecules
    12.7 Two-Dimensional Fourier Transform NMR
    12.8 Two-Dimensional Fr NMR Applied to Macromolecules
    Chapter 13 Macromolecules in Solution: Thermodynamics and Equilibria
    13.1 Some Fundamentals of Solution Thermodynamics
    13.2 Applications of the Chemical Potential to Physical Equilibria
    Chapter 14 Chemical Equilibria Involving Macromolecules
    14.1 Thermodynamics of Chemical Reactions in Solution: A Review
    14.2 Interactions Between Macromolecules
    14.3 Binding of Small Ligands by Macromolecules
    14.4 Binding to Nucleic Acids
    Chapter 15 Mass Spectrometry of Macromolecules
    15.1 General Principles: The Problem
    15.2 Resolving Molecular Weights by Mass Spectrometry
    15.3 Determining Molecular Weights of Biomolecules
    15.4 Identification of Biomolecules by Molecular Weights
    15.5 Sequencing by Mass Spectrometry
    15.6 Probing Three-Dimensional Structure by Mass Spectrometry
    Chapter 16 Single-Molecule Methods
    16.1 Why Study Single Molecules?
    16.2 Observation of Single Macromolecules by Fluorescence
    16.3 Atomic Force Microscopy
    16.4 Optical Tweezers
    16.5 Magnetic Beads
    Answers to Odd-Numbered Problems
    Index